In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification

被引:0
作者
Ebrahimi, Pouya [1 ]
Davoudi, Elham [2 ]
Sadeghian, Razieh [1 ]
Zadeh, Amin Zaki [1 ]
Razmi, Emran [3 ]
Heidari, Reza [4 ]
Morowvat, Mohammad Hossein [4 ,5 ]
Sadeghian, Issa [4 ]
机构
[1] Ahvaz Jundishapur Univ Med Sci, Ahvaz, Iran
[2] Univ Massachusetts Lowell, Dept Biomed & Nutr Sci, Lowell, MA USA
[3] Arak Univ Med Sci, Arak, Iran
[4] Shiraz Univ Med Sci, Pharmaceut Sci Res Ctr, Shiraz, Iran
[5] Shiraz Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Shiraz, Iran
关键词
Neurodegenerative diseases; Gene therapy; AD; PD; HD; ALS; MESENCHYMAL STEM-CELLS; AMYOTROPHIC-LATERAL-SCLEROSIS; NEUROTROPHIC FACTOR GENE; INDUCED NEURONAL INJURY; SHORT HAIRPIN RNAS; RAT MODEL; PARKINSONS-DISEASE; HUNTINGTONS-DISEASE; ALZHEIMERS-DISEASE; MOUSE MODEL;
D O I
10.1007/s00210-024-03141-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Neurodegenerative diseases (NDDs), including AD, PD, HD, and ALS, represent a growing public health concern linked to aging and lifestyle factors, characterized by progressive nervous system damage leading to motor and cognitive deficits. Current therapeutics offer only symptomatic management, highlighting the urgent need for disease-modifying treatments. Gene therapy has emerged as a promising approach, targeting the underlying pathology of diseases with diverse strategies including gene replacement, gene silencing, and gene editing. This innovative therapeutic approach involves introducing functional genetic material to combat disease mechanisms, potentially offering long-term efficacy and disease modification. With advancements in genomics, structural biology, and gene editing tools such as CRISPR/Cas9, gene therapy holds significant promise for addressing the root causes of NDDs. Significant progress in preclinical and clinical studies has demonstrated the potential of in vivo and ex vivo gene therapy to treat various NDDs, offering a versatile and precise approach in comparison to conventional treatments. The current review describes various gene therapy approaches employed in preclinical and clinical studies for the treatment of NDDs, including AD, PD, HD, and ALS, and addresses some of the key translational challenges in this therapeutic approach.
引用
收藏
页码:7501 / 7530
页数:30
相关论文
共 267 条
[1]   Correction of amyotrophic lateral sclerosis related phenotypes in induced pluripotent stem cell-derived motor neurons carrying a hexanucleotide expansion mutation in C9orf72 by CRISPR/Cas9 genome editing using homology-directed repair [J].
Ababneh, Nidaa A. ;
Scaber, Jakub ;
Flynn, Rowan ;
Douglas, Andrew ;
Barbagallo, Paola ;
Candalija, Ana ;
Turner, Martin R. ;
Sims, David ;
Dafinca, Ruxandra ;
Cowley, Sally A. ;
Talbot, Kevin .
HUMAN MOLECULAR GENETICS, 2020, 29 (13) :2200-2217
[2]   The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases [J].
Abdelnour, Sameh A. ;
Xie, Long ;
Hassanin, Abdallah A. ;
Zuo, Erwei ;
Lu, Yangqing .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
[3]   Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy [J].
Acsadi, G ;
Anguelov, RA ;
Yang, HB ;
Toth, G ;
Thomas, R ;
Jani, A ;
Wang, YY ;
Ianakova, E ;
Mohammad, S ;
Lewis, RA ;
Shy, ME .
HUMAN GENE THERAPY, 2002, 13 (09) :1047-1059
[4]   Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys [J].
Alarcon-Aris, Diana ;
Pavia-Collado, Ruben ;
Miquel-Rio, Lluis ;
Coppola-Segovia, Valentin ;
Ferres-Coy, Albert ;
Ruiz-Bronchal, Esther ;
Galofre, Mireia ;
Paz, Veronica ;
Campa, Leticia ;
Revilla, Raquel ;
Montefeltro, Andres ;
Kordower, Jeffrey H. ;
Vila, Miquel ;
Artigas, Francesc ;
Bortolozzi, Analia .
EBIOMEDICINE, 2020, 59
[5]   Selective α-Synuclein Knockdown in Monoamine Neurons by Intranasal Oligonucleotide Delivery: Potential Therapy for Parkinson's Disease [J].
Alarcon-Aris, Diana ;
Recasens, Ariadna ;
Galofre, Mireia ;
Carballo-Carbajal, Iria ;
Zacchi, Nicolas ;
Ruiz-Bronchal, Esther ;
Pavia-Collado, Ruben ;
Chica, Rosario ;
Ferres-Coy, Albert ;
Santos, Marina ;
Revilla, Raquel ;
Montefeltro, Andres ;
Farinas, Isabel ;
Artigas, Francesc ;
Vila, Miguel ;
Bortolozzi, Analia .
MOLECULAR THERAPY, 2018, 26 (02) :550-567
[6]   Non-coding RNAs as key players in the neurodegenerative diseases: Multi-platform strategies and approaches for exploring the Genome's dark matter [J].
Almohaimeed, Hailah M. ;
Assiri, Rasha ;
Althubaiti, Eman Hillal ;
Aggad, Waheeb S. ;
Shaheen, Sameerah ;
Shaheen, Marwa Y. ;
Batarfi, Munirah A. ;
Alharbi, Nada Abdullah ;
Alshehri, Areej Mohammed ;
Alkhudhairy, Basal Sulaiman M. .
JOURNAL OF CHEMICAL NEUROANATOMY, 2023, 129
[7]   Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products [J].
Angeloni, Cristina ;
Malaguti, Marco ;
Prata, Cecilia ;
Freschi, Michela ;
Barbalace, Maria Cristina ;
Hrelia, Silvana .
ANTIOXIDANTS, 2023, 12 (01)
[8]   Entering the Modern Era of Gene Therapy [J].
Anguela, Xavier M. ;
High, Katherine A. .
ANNUAL REVIEW OF MEDICINE, VOL 70, 2019, 70 :273-288
[9]   FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling [J].
Arias-Fuenzalida, Jonathan ;
Jarazo, Javier ;
Qing, Xiaobing ;
Walter, Jonas ;
Gomez-Giro, Gemma ;
Nickels, Sarah Louise ;
Zaehres, Holm ;
Schoeler, Hans Robert ;
Schwamborn, Jens Christian .
STEM CELL REPORTS, 2017, 9 (05) :1423-1431
[10]   Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease [J].
Back, Susanne ;
Peranen, Johan ;
Galli, Emilia ;
Pulkkila, Paivi ;
Lonka-Nevalaita, Liina ;
Tamminen, Tuulia ;
Voutilainen, Merja H. ;
Raasmaja, Atso ;
Saarma, Mart ;
Mannisto, Pekka T. ;
Tuominen, Raimo K. .
BRAIN AND BEHAVIOR, 2013, 3 (02) :75-88