GPR41 and GPR43: From development to metabolic regulation

被引:26
作者
Lee, Do-Hyung [1 ]
Kim, Min-Tae [2 ]
Han, Joo-Hui [3 ,4 ]
机构
[1] Chungnam Natl Univ, Coll Pharm, Daejeon 34134, South Korea
[2] KyongBo Pharmaceut Co Ltd, Dept Pharmaceut Res, 174 Sirok Ro, Asan 31501, Chungcheongnam, South Korea
[3] Woosuk Univ, Coll Pharm, Wonju 55338, South Korea
[4] Woosuk Univ, Res Inst Pharmaceut Sci, Wonju 55338, South Korea
基金
新加坡国家研究基金会;
关键词
GPR41; GPR43; Short chain fatty acid; Gut microbiota; Metabolic disease; CHAIN FATTY-ACIDS; PROTEIN-COUPLED RECEPTOR; GUT MICROBIOTA; INFLAMMATORY RESPONSES; INSULIN-SECRETION; NERVOUS-SYSTEM; CONTRIBUTES; PROPIONATE; EXPRESSION; ACETATE;
D O I
10.1016/j.biopha.2024.116735
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
G -protein -coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G -protein -coupled receptors, GPR41 and GPR43, sense short -chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.
引用
收藏
页数:10
相关论文
共 97 条
[1]   Commensal microbe-derived acetate suppresses NAFLD/NASH development via hepatic FFAR2 signalling in mice [J].
Aoki, Ryo ;
Onuki, Masayoshi ;
Hattori, Koya ;
Ito, Masato ;
Yamada, Takahiro ;
Kamikado, Kohei ;
Kim, Yun-Gi ;
Nakamoto, Nobuhiro ;
Kimura, Ikuo ;
Clarke, Julie M. ;
Kanai, Takanori ;
Hase, Koji .
MICROBIOME, 2021, 9 (01)
[2]   Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content [J].
Bellahcene, Mohamed ;
O'Dowd, Jacqueline F. ;
Wargent, Ed T. ;
Zaibi, Mohamed S. ;
Hislop, David C. ;
Ngala, Robert A. ;
Smith, David M. ;
Cawthorne, Michael A. ;
Stocker, Claire J. ;
Arch, Jonathan R. S. .
BRITISH JOURNAL OF NUTRITION, 2013, 109 (10) :1755-1764
[3]   Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet [J].
Bjursell, Mikael ;
Admyre, Therese ;
Goransson, Melker ;
Marley, Anna E. ;
Smith, David M. ;
Oscarsson, Jan ;
Bohlooly-Y, Mohammad .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2011, 300 (01) :E211-E220
[4]   Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung [J].
Bonini, JA ;
Anderson, SM ;
Steiner, DF .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 234 (01) :190-193
[5]   The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J].
Brown, AJ ;
Goldsworthy, SM ;
Barnes, AA ;
Eilert, MM ;
Tcheang, L ;
Daniels, D ;
Muir, AI ;
Wigglesworth, MJ ;
Kinghorn, I ;
Fraser, NJ ;
Pike, NB ;
Strum, JC ;
Steplewski, KM ;
Murdock, PR ;
Holder, JC ;
Marshall, FH ;
Szekeres, PG ;
Wilson, S ;
Ignar, DM ;
Foord, SM ;
Wise, A ;
Dowell, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :11312-11319
[6]   Gut microbiota, enteroendocrine functions and metabolism [J].
Cani, Patrice D. ;
Everard, Amandine ;
Duparc, Thibaut .
CURRENT OPINION IN PHARMACOLOGY, 2013, 13 (06) :935-940
[7]   Regulator of G-Protein Signaling-4 Attenuates Cardiac Adverse Remodeling and Neuronal Norepinephrine Release-Promoting Free Fatty Acid Receptor FFAR3 Signaling [J].
Carbone, Alexandra M. ;
Borges, Jordana, I ;
Suster, Malka S. ;
Sizova, Anastasiya ;
Cora, Natalie ;
Desimine, Victoria L. ;
Lymperopoulos, Anastasios .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
[8]   Sodium Butyrate Modulates Mucosal Inflammation Injury Mediated by GPR41/43 in the Cecum of Goats Fed a High Concentration Diet [J].
Chang, Guangjun ;
Ma, Nana ;
Zhang, Huanmin ;
Wang, Yan ;
Huang, Jie ;
Liu, Jing ;
Dai, Hongyu ;
Shen, Xiangzhen .
FRONTIERS IN PHYSIOLOGY, 2019, 10
[9]   Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity [J].
Chun, Eunyoung ;
Lavoie, Sydney ;
Fonseca-Pereira, Diogo ;
Bae, Sena ;
Michaud, Monia ;
Hoveyda, Hamid R. ;
Fraser, Graeme L. ;
Comeau, Carey Ann Gallini ;
Glickman, Jonathan N. ;
Fuller, Miles H. ;
Layden, Brian T. ;
Garrett, Wendy S. .
IMMUNITY, 2019, 51 (05) :871-+
[10]   Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior [J].
Cook, Tyler M. ;
Gavini, Chaitanya K. ;
Jesse, Jason ;
Aubert, Gregory ;
Gornick, Emily ;
Bonomo, Raiza ;
Gautron, Laurent ;
Layden, Brian T. ;
Mansuy-Aubert, Virginie .
MOLECULAR METABOLISM, 2021, 54