ON LOCALIZATION AND HOMOGENEITY FOR ANALYTIC QUASI-PERIODIC SCHRO<spacing diaeresis>DINGER <spacing diaeresis> DINGER OPERATORS WITH GEVREY PERTURBATION

被引:0
作者
Tao, Kai [1 ]
机构
[1] Hohai Univ, Coll Sci, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China
关键词
Quasi-periodic Schro<spacing diaeresis>dinger operator; gevrey perturbation; Diophan- tine frequency; Anderson localization; homogeneous spectrum; DENSITY-OF-STATES; ANDERSON LOCALIZATION; SCHRODINGER-OPERATORS; HOLDER CONTINUITY; SPECTRUM;
D O I
10.3934/cpaa.2024054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was shown in [4, 9] that the non-perturbative Anderson localization and homogeneous spectrum hold for the quasi-periodic analytic Schro<spacing diaeresis>dinger operator in the positive Lyapunov exponent regime. In this paper, we prove that they are both stable under the Gevrey perturbation on the potential with the Diophantine frequency.
引用
收藏
页码:1216 / 1239
页数:24
相关论文
共 22 条
[1]   SHARP PHASE TRANSITIONS FOR THE ALMOST MATHIEU OPERATOR [J].
Avila, Artur ;
You, Jiangong ;
Zhou, Qi .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) :2697-2718
[2]   Anderson localization for Schrodinger operators on Z2 with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M ;
Schlag, W .
ACTA MATHEMATICA, 2002, 188 (01) :41-86
[3]   Anderson localization for Schrodinger operators on Z with potentials given by the skew-shift [J].
Bourgain, J ;
Goldstein, M ;
Schlag, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) :583-621
[4]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[5]  
Bourgain J., 2005, Annals of Mathematics Studies, Vvol 158
[6]  
Bourgain J, 2007, GEOM FUNCT ANAL, V17, P682, DOI 10.1007/s00039-007-0610-2
[7]   Polynomial decay of the gap length for Ck quasi-periodic Schrodinger operators and spectral application [J].
Cai, Ao ;
Wang, Xueyin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (03)
[8]   Stability of Spectral Types of Quasi-periodic Schrodinger Operators with Respect to Perturbations by Decaying Potentials [J].
Damanik, David ;
Li, Xianzhe ;
You, Jiangong ;
Zhou, Qi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) :1069-1108
[9]   Homogeneity of the spectrum for quasi-periodic Schrodinger operators [J].
Damanik, David ;
Goldstein, Michael ;
Schlag, Wilhelm ;
Voda, Mircea .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (12) :3073-3111
[10]   LARGE DEVIATION THEOREMS FOR DIRICHLET DETERMINANTS OF ANALYTIC QUASI-PERIODIC JACOBI OPERATORS WITH BRJUNO-RUSSMANN FREQUENCY [J].
Geng, Wenmeng ;
Tao, Kai .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (12) :5305-5335