Microwave quantum illumination: enhanced azimuth detection with cavity magnonics

被引:0
作者
Yang, Zhongchen [1 ,2 ,3 ]
Li, Yongqiang [1 ,2 ,3 ]
Wang, Jie [1 ,2 ,3 ]
Zuo, Yunlan [1 ,2 ,3 ]
Lu, Tian-Xiang [4 ]
Jing, Hui [1 ,2 ,3 ]
Ren, Changliang [1 ,2 ,3 ]
机构
[1] Hunan Normal Univ, Sch Phys & Elect, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Minist Educ, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[4] Gannan Normal Univ, Coll Phys & Elect Informat, Ganzhou 341000, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 16期
基金
中国国家自然科学基金;
关键词
Quantum optics;
D O I
10.1364/OE.528688
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Most current microwave quantum illumination techniques rely on hybrid quantum systems to detect the presence of targets. However, real-world radar tasks are considerably more intricate than this simplistic model. Accurately determining physical attributes such as object speed, position, and azimuth is also essential. In this study, we explore azimuth detection using a quantum illumination approach based on a cavity-optomagnonics system and analyze the accuracy of azimuth detection in this framework. Our results indicate that this approach significantly outperforms classical microwave radar in azimuth detection within the parameters of current existing experiments. Additionally, we investigate the impact of Kerr nonlinearity of the YIG sphere on azimuth detection accuracy, revealing a clear improvement with the incorporation of Kerr nonlinearity. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:28293 / 28308
页数:16
相关论文
共 61 条
  • [1] Extremal entanglement and mixedness in continuous variable systems
    Adesso, G
    Serafini, A
    Illuminati, F
    [J]. PHYSICAL REVIEW A, 2004, 70 (02) : 022318 - 1
  • [2] Quantum advantage in microwave quantum radar
    Assouly, R.
    Dassonneville, R.
    Peronnin, T.
    Bienfait, A.
    Huard, B.
    [J]. NATURE PHYSICS, 2023, 19 (10) : 1418 - 1422
  • [3] Optical detection of radio waves through a nanomechanical transducer
    Bagci, T.
    Simonsen, A.
    Schmid, S.
    Villanueva, L. G.
    Zeuthen, E.
    Appel, J.
    Taylor, J. M.
    Sorensen, A.
    Usami, K.
    Schliesser, A.
    Polzik, E. S.
    [J]. NATURE, 2014, 507 (7490) : 81 - 85
  • [4] Microwave quantum illumination using a digital receiver
    Barzanjeh, S.
    Pirandola, S.
    Vitali, D.
    Fink, J. M.
    [J]. SCIENCE ADVANCES, 2020, 6 (19)
  • [5] Reversible Optical-to-Microwave Quantum Interface
    Barzanjeh, Sh
    Abdi, M.
    Milburn, G. J.
    Tombesi, P.
    Vitali, D.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (13)
  • [6] Entangling optical and microwave cavity modes by means of a nanomechanical resonator
    Barzanjeh, Sh.
    Vitali, D.
    Tombesi, P.
    Milburn, G. J.
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):
  • [7] Microwave Quantum Illumination
    Barzanjeh, Shabir
    Guha, Saikat
    Weedbrook, Christian
    Vitali, David
    Shapiro, Jeffrey H.
    Pirandola, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (08)
  • [8] Bochmann J, 2013, NAT PHYS, V9, P712, DOI [10.1038/NPHYS2748, 10.1038/nphys2748]
  • [9] Microwave quantum illumination via cavity magnonics
    Cai, Qizhi
    Liao, Jinkun
    Shen, Bohai
    Guo, Guangcan
    Zhou, Qiang
    [J]. PHYSICAL REVIEW A, 2021, 103 (05)
  • [10] Stationary Entanglement between Light and Microwave via Ferromagnetic Magnons
    Cai, Qizhi
    Liao, Jinkun
    Zhou, Qiang
    [J]. ANNALEN DER PHYSIK, 2020, 532 (12)