Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data

被引:77
作者
Asteris, Panagiotis G. [1 ]
Karoglou, Maria [2 ]
Skentou, Athanasia D. [1 ]
Vasconcelos, Graca [3 ]
He, Mingming [4 ]
Bakolas, Asterios [2 ]
Zhou, Jian [5 ]
Armaghani, Danial Jahed [6 ]
机构
[1] Sch Pedag & Technol Educ, Computat Mech Lab, GR-14121 Athens, Greece
[2] Natl Tech Univ Athens, Sch Chem Engn, Zografou Campus, GR-15780 Athens, Greece
[3] Univ Minho, Dept Civil Engn, ISISE, Braga, Portugal
[4] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, Xian 710048, Peoples R China
[5] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
[6] Univ Technol Sydney, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
关键词
Artificial Neural Networks; Machine learning; Non-destructive testing; Rocks; Unconfined compressive strength; ARTIFICIAL NEURAL-NETWORKS; ULTRASONIC PULSE VELOCITY; POINT LOAD STRENGTH; ULTIMATE AXIAL LOAD; MECHANICAL-PROPERTIES; P-WAVE; PHYSICOMECHANICAL PROPERTIES; ENGINEERING PROPERTIES; GRANITIC-ROCKS; PHYSICAL-PROPERTIES;
D O I
10.1016/j.ultras.2024.107347
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The unconfined compressive strength (UCS) of intact rocks is crucial for engineering applications, but traditional laboratory testing is often impractical, especially for historic buildings lacking sufficient core samples. Nondestructive tests like the Schmidt hammer rebound number and compressional wave velocity offer solutions, but correlating these with UCS requires complex mathematical models. This paper introduces a novel approach using an artificial neural network (ANN) to simultaneously correlate UCS with three non -destructive test indexes: Schmidt hammer rebound number, compressional wave velocity, and open -effective porosity. The proposed ANN model outperforms existing methods, providing accurate UCS predictions for various rock types. Contour maps generated from the model offer practical tools for geotechnical and geological engineers, facilitating decisionmaking in the field and enhancing educational resources. This integrated approach promises to streamline UCS estimation, improving efficiency and accuracy in engineering assessments of intact rock materials.
引用
收藏
页数:21
相关论文
共 176 条
[21]   Soft computing-based models for the prediction of masonry compressive strength [J].
Asteris, Panagiotis G. ;
Lourenco, Paulo B. ;
Hajihassani, Mohsen ;
Adami, Chrissy-Elpida N. ;
Lemonis, Minas E. ;
Skentou, Athanasia D. ;
Marques, Rui ;
Hoang Nguyen ;
Rodrigues, Hugo ;
Varum, Humberto .
ENGINEERING STRUCTURES, 2021, 248
[22]   Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling [J].
Asteris, Panagiotis G. ;
Lemonis, Minas E. ;
Tien-Thinh Le ;
Tsavdaridis, Konstantinos Daniel .
ENGINEERING STRUCTURES, 2021, 248
[23]   Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks [J].
Asteris, Panagiotis G. ;
Mamou, Anna ;
Hajihassani, Mohsen ;
Hasanipanah, Mahdi ;
Koopialipoor, Mohammadreza ;
Tien-Thinh Le ;
Kardani, Navid ;
Armaghani, Danial J. .
TRANSPORTATION GEOTECHNICS, 2021, 29
[24]   Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes [J].
Asteris, Panagiotis G. ;
Lemonis, Minas E. ;
Thuy-Anh Nguyen ;
Hiep Van Le ;
Binh Thai Pham .
STEEL AND COMPOSITE STRUCTURES, 2021, 39 (04) :471-491
[25]   Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models [J].
Asteris, Panagiotis G. ;
Skentou, Athanasia D. ;
Bardhan, Abidhan ;
Samui, Pijush ;
Pilakoutas, Kypros .
CEMENT AND CONCRETE RESEARCH, 2021, 145 (145)
[26]   A Novel Heuristic Algorithm for the Modeling and Risk Assessment of the COVID-19 Pandemic Phenomenon [J].
Asteris, Panagiotis G. ;
Douyika, Maria G. ;
Karamani, Chrysoula A. ;
Skentou, Athanasia D. ;
Chlichlia, Katerina ;
Cayaleri, Liborio ;
Daras, Tryfon ;
Armaghani, Danial J. ;
Zaoutis, Theoklis E. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (02) :815-828
[27]   Masonry Compressive Strength Prediction Using Artificial Neural Networks [J].
Asteris, Panagiotis G. ;
Argyropoulos, Ioannis ;
Cavaleri, Liborio ;
Rodrigues, Hugo ;
Varum, Humberto ;
Thomas, Job ;
Lourenco, Paulo B. .
TRANSDISCIPLINARY MULTISPECTRAL MODELING AND COOPERATION FOR THE PRESERVATION OF CULTURAL HERITAGE, PT II, 2019, 962 :200-224
[28]  
ASTM, ASTM D5873-00
[29]   Evaluation of the physico-mechanical properties of plutonic rocks based on texture coefficient [J].
Atici, U. ;
Comakli, R. .
JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2019, 119 (01) :63-69
[30]   The Schmidt hammer in rock material characterization [J].
Aydin, A ;
Basu, A .
ENGINEERING GEOLOGY, 2005, 81 (01) :1-14