Nociceptor-Enhanced Spike-Timing-Dependent Plasticity in Memristor with Coexistence of Filamentary and Non-Filamentary Switching

被引:12
作者
Ju, Dongyeol [1 ]
Lee, Jungwoo [1 ]
Kim, Sungjun [1 ]
机构
[1] Dongguk Univ, Div Elect & Elect Engn, Seoul 04620, South Korea
来源
ADVANCED MATERIALS TECHNOLOGIES | 2024年 / 9卷 / 19期
基金
新加坡国家研究基金会;
关键词
artificial synapse; memristor; nervous system; nociceptor; reservoir computing; MEMORY; DEVICE; BILAYER; PAIN; FILM;
D O I
10.1002/admt.202400440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the era of big data, traditional computing architectures face limitations in handling vast amounts of data owing to the separate processing and memory units, thus causing bottlenecks and high-energy consumption. Inspired by the human brain's information exchange mechanism, neuromorphic computing offers a promising solution. Resistive random access memory devices, particularly those with bilayer structures like Pt/TaOx/TiOx/TiN, show potential for neuromorphic computing owing to their simple design, low-power consumption, and compatibility with existing technology. This study investigates the synaptic applications of Pt/TaOx/TiOx/TiN devices for neuromorphic computing. The unique coexistence of nonfilamentary and filamentary switching in the Pt/TaOx/TiOx/TiN device enables the realization of reservoir computing and the functions of artificial nociceptors and synapses. Additionally, the linkage between artificial nociceptors and synapses is examined based on injury-enhanced spike-time-dependent plasticity paradigms. This study underscores the Pt/TaOx/TiOx/TiN device's potential in neuromorphic computing, providing a framework for simulating nociceptors, synapses, and learning principles. A bilayer-structured memristor has been developed, showcasing reliable resistive switching in both filamentary and non-filamentary modes. This memristor displays diverse capabilities, serving as a unified entity capable of reservoir computing, emulating artificial nociceptors, and functioning as a synapse. Through the application of Hebbian learning rules, it facilitates the comprehension of how external pain influences variations in brain activity. image
引用
收藏
页数:12
相关论文
共 66 条
[1]   Efficient Resistive Switching and Spike Rate Dependent Plasticity in a New CuCrO2 Memristor for Plausible Neuromorphic Systems [J].
Boppidi, Pavan Kumar Reddy ;
Suresh, Bharathwaj ;
Zhussupbekova, Ainur ;
Biswas, Pranab ;
Mullarkey, Daragh ;
Raj, P. Michael Preetam ;
Shvets, Igor V. ;
Kundu, Souvik .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (08) :3451-3458
[2]   Filament observation in metal-oxide resistive switching devices [J].
Celano, Umberto ;
Chen, Yang Yin ;
Wouters, Dirk J. ;
Groeseneken, Guido ;
Jurczak, Malgorzata ;
Vandervorst, Wilfried .
APPLIED PHYSICS LETTERS, 2013, 102 (12)
[3]   Mimicking Neuroplasticity via Ion Migration in van der Waals Layered Copper Indium Thiophosphate [J].
Chen, Jiangang ;
Zhu, Chao ;
Cao, Guiming ;
Liu, Haishi ;
Bian, Renji ;
Wang, Jinyong ;
Li, Changcun ;
Chen, Jieqiong ;
Fu, Qundong ;
Liu, Qing ;
Meng, Peng ;
Li, Wei ;
Liu, Fucai ;
Liu, Zheng .
ADVANCED MATERIALS, 2022, 34 (25)
[4]   Analog Resistive Switching and Synaptic Functions in WOx/TaOx Bilayer through Redox-Induced Trap-Controlled Conduction [J].
Chen, Wei-Ju ;
Cheng, Chia-Hao ;
Lin, Pei-En ;
Tseng, Yi-Ting ;
Chang, Ting-Chang ;
Chen, Jen-Sue .
ACS APPLIED ELECTRONIC MATERIALS, 2019, 1 (11) :2422-2430
[5]  
Choi K.W., 2022, SCI REP-UK, V12, P1259
[6]   Causes and consequences of the stochastic aspect of filamentary RRAM [J].
Degraeve, R. ;
Fantini, A. ;
Raghavan, N. ;
Goux, L. ;
Clima, S. ;
Govoreanu, B. ;
Belmonte, A. ;
Linten, D. ;
Jurczak, M. .
MICROELECTRONIC ENGINEERING, 2015, 147 :171-175
[7]   Memory materials: a unifying description [J].
Di Ventra, Massimiliano ;
Pershin, Yuriy V. .
MATERIALS TODAY, 2011, 14 (12) :584-591
[8]   Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device [J].
Dongale, Tukaram D. ;
Khot, Atul C. ;
Takaloo, Ashkan, V ;
Son, Kyung Rock ;
Kim, Tae Geun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 78 :81-91
[9]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[10]   Reservoir Computing with Charge-Trap Memory Based on a MoS2 Channel for Neuromorphic Engineering [J].
Farronato, Matteo ;
Mannocci, Piergiulio ;
Melegari, Margherita ;
Ricci, Saverio ;
Compagnoni, Christian Monzio ;
Ielmini, Daniele .
ADVANCED MATERIALS, 2023, 35 (37)