Dynamics and control of a plant-herbivore model incorporating Allee's effect

被引:0
作者
Qurban, Muhammad [1 ]
Khaliq, Abdul [1 ]
Nisar, Kottakkaran Scooppy [2 ]
Shah, Nehad Ali [3 ]
机构
[1] Riphah Int Univ, Dept Math, Lahore, Pakistan
[2] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[3] Sejong Univ, Dept Mech Engn, Seoul 05006, South Korea
关键词
Allee's effect; Stability; Neimark-Sacker bifurcation; Transcritical bifurcation; Chaos control; BIFURCATION-ANALYSIS; CHAOS CONTROL; PERIODIC-SOLUTION; COMPLEX DYNAMICS; EXISTENCE; SYSTEM;
D O I
10.1016/j.heliyon.2024.e30754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research focuses on the interaction between the grape borer and grapevine using a discrete-time plant-herbivore model with Allee's effect. We specifically investigate a model that incorporates a strong predator functional response to better understand the system's qualitative behavior at positive equilibrium points. In the present study, we explore the topological classifications at fixed points, stability analysis, Neimark-Sacker, Transcritical bifurcation and State feedback control in the two-dimensional discrete-time plant-herbivore model. It is proved that for all involved parameters zeta(1), rho(1), gamma(1) and gamma(1), discrete-time plant-herbivore model has boundary and interior fixed points: c(1) = (0, 0), c(2) = (zeta(1)-1/rho(1), 0) and c(3) = (gamma(1)(1-gamma(1))/2 gamma(1)-1, root gamma(1)(2 zeta(1)+rho(1 gamma 1)-2)-rho(1)gamma(1)+1-zeta(1)/2 gamma(1)-1) respectively. Then by linear stability theory, local dynamics with different topological classifications are investigated at fixed points: c(1) = (0, 0), c(2) = (zeta(1)-1/rho(1), 0) and c(3) = (gamma(1)(1-gamma(1))2 gamma(1)-1, root gamma(1)(2 zeta(1)+rho(1)gamma(1)-2)-rho(1)gamma(1)+1-zeta(1)/2 gamma(1)-1). Our investigation uncovers that the boundary equilibrium c(2) = (zeta(1)-1/rho(1), 0) experiences a transcritical bifurcation, whereas the unique positive steady-state c(3) = (gamma(1)(1-gamma(1))/2 gamma(1)-1, root gamma(1)(2 zeta(1)+ rho(1)gamma(1)-2)- rho(1)gamma(1)+1-zeta(1)/2 gamma(1)-1) of the discrete-time plant-herbivore model undergoes a Neimark-Sacker bifurcation. To address the periodic fluctuations in grapevine population density and other unpredictable behaviors observed in the model, we propose implementing state feedback chaos control. To support our theoretical findings, we provide comprehensive numerical simulations, phase portraits, dynamics diagrams, and a graph of the maximum Lyapunov exponent. These visual representations enhance the clarity of our research outcomes and further validate the effectiveness of the chaos control approach.
引用
收藏
页数:22
相关论文
共 56 条
[1]   Food limitation and insect outbreaks: complex dynamics in plant-herbivore models [J].
Abbott, Karen C. ;
Dwyer, Greg .
JOURNAL OF ANIMAL ECOLOGY, 2007, 76 (05) :1004-1014
[2]   Reduction the secular solution to periodic solution in the generalized restricted three-body problem [J].
Abouelmagd, Elbaz I. ;
Awad, M. E. ;
Elzayat, E. M. A. ;
Abbas, Ibrahim A. .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 350 (02) :495-505
[3]   MATHEMATICAL-ANALYSIS OF A MODEL FOR A PLANT-HERBIVORE SYSTEM [J].
ALLEN, LJS ;
HANNIGAN, MK ;
STRAUSS, MJ .
BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (04) :847-864
[4]   A PRELIMINARY MATHEMATICAL-MODEL OF THE APPLE TWIG BORER (COLEOPTERA, BOSTRICHIDAE) AND GRAPES ON THE TEXAS HIGH-PLAINS [J].
ALLEN, LJS ;
STRAUSS, MJ ;
THORVILSON, HG ;
LIPE, WN .
ECOLOGICAL MODELLING, 1991, 58 (1-4) :369-382
[5]  
Beiriger R., 1989, Determination of adult apple twig borer sex based on a comparison of internal and external morphology
[6]  
Beiriger R., 1988, Proceedings of the Texas Grape Growers Association 12th Annual Conference, P101
[7]   Stable coexistence of an invasive plant and biocontrol agent: a parameterized coupled plant-herbivore model [J].
Buckley, YM ;
Rees, M ;
Sheppard, AW ;
Smyth, MJ .
JOURNAL OF APPLIED ECOLOGY, 2005, 42 (01) :70-79
[8]   GLOBAL DYNAMICS OF A PLANT-HERBIVORE MODEL WITH TOXIN-DETERMINED FUNCTIONAL RESPONSE [J].
Castillo-Chavez, Carlos ;
Feng, Zhilan ;
Huang, Wenzhang .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (04) :1002-1020
[9]   Complex dynamics of a discrete-time predator-prey system with Holling IV functional response [J].
Cui, Qianqian ;
Zhang, Qiang ;
Qiu, Zhipeng ;
Hu, Zengyun .
CHAOS SOLITONS & FRACTALS, 2016, 87 :158-171
[10]   Shannon capacity and codes for communicating with a chaotic laser [J].
de Moraes, RM ;
Uchôa, BF ;
Pimentel, C ;
Palazzo, R ;
Leite, JRR .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (06) :882-887