On Symplectic Birational Self-Maps of Projective Hyperkähler Manifolds of K3[n]-Type

被引:0
|
作者
Dutta, Yajnaseni [1 ]
Mattei, Dominique [2 ]
Prieto-Montanez, Yulieth [3 ]
机构
[1] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333CA Leiden, Netherlands
[2] Univ Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera, 11, I-34151 Trieste, Italy
关键词
STABILITY CONDITIONS; AUTOMORPHISMS; TORELLI; SPACE;
D O I
10.1093/imrn/rnae112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that projective hyperk & auml;hler manifolds of K3([n])-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.
引用
收藏
页码:11064 / 11081
页数:18
相关论文
共 9 条
  • [1] Symplectic involutions of K3[n] type and Kummer n type manifolds
    Kamenova, Ljudmila
    Mongardi, Giovanni
    Oblomkov, Alexei
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (03) : 894 - 909
  • [2] Non-symplectic involutions of irreducible symplectic manifolds of K3[n]-type
    Joumaah, Malek
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) : 761 - 790
  • [3] NON-SYMPLECTIC INVOLUTIONS ON MANIFOLDS OF K3[n]-TYPE
    Camere, Chiara
    Cattaneo, Alberto
    Cattaneo, Andrea
    NAGOYA MATHEMATICAL JOURNAL, 2021, 243 : 278 - 302
  • [4] MBM classes and contraction loci on low-dimensional hyperka spacing diaeresis hler manifolds of K3[n] type
    Amerik, Ekaterina
    Verbitsky, Misha
    ALGEBRAIC GEOMETRY, 2022, 9 (03): : 252 - 265
  • [5] Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K3[n]-Type
    Markman, Eyal
    ALGEBRAIC AND COMPLEX GEOMETRY, 2014, 71 : 241 - 283
  • [6] Complex ball quotients from manifolds of K3[n]-type
    Boissiere, Samuel
    Camere, Chiara
    Sarti, Alessandra
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1123 - 1138
  • [7] MORI CONES OF HOLOMORPHIC SYMPLECTIC VARIETIES OF K3 TYPE
    Bayer, Arend
    Hassett, Brendan
    Tschinkel, Yuri
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (04): : 941 - 950
  • [8] Birational boundedness for holomorphic symplectic varieties, Zarhin's trick for K3 surfaces, and the Tate conjecture
    Charles, Francois
    ANNALS OF MATHEMATICS, 2016, 184 (02) : 487 - 526
  • [9] Rational Hodge isometries of hyper-Kahler varieties of K3[n] type are algebraic
    Markman, Eyal
    COMPOSITIO MATHEMATICA, 2024, 160 (06) : 1261 - 1303