SEMI-SUPERVISED AUTOENCODER WITH JOINT LOSS LEARNING FOR BEARING FAULT DETECTION

被引:0
作者
Zhou, Kai [1 ,2 ]
Zhang, Yang [3 ]
Tang, Jiong [4 ]
机构
[1] Michigan Technol Univ, Dept Mech Engn Mech, Houghton, MI 49931 USA
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
来源
PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 12 | 2023年
基金
美国国家科学基金会;
关键词
Rolling bearing; deep learning; fault detection; semi-supervised learning; autoencoder; joint loss; DIAGNOSIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Timely and accurate bearing fault detection plays an important role in various industries. Data-driven deep learning methods have recently become a prevailing approach for bearing fault detection. Despite the success of deep learning, fault diagnosis performance is hinged upon the size of labeled data, the acquisition of which oftentimes is expensive in actual practice. Unlabeled data, on the other hand, are inexpensive. To fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance, in this research, we develop a semi-supervised learning method built upon the autoencoder. In this method, a joint loss is established to account for the effects of both the labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other benchmark models.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [42] Semi-Supervised Active Learning for Object Detection
    Chen, Sijin
    Yang, Yingyun
    Hua, Yan
    ELECTRONICS, 2023, 12 (02)
  • [43] A semi-supervised learning model for intrusion detection
    Jiang, Eric P.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (03): : 343 - 353
  • [44] DEEP SEMI-SUPERVISED LEARNING FOR DOMAIN ADAPTATION
    Chen, Hung-Yu
    Chien, Jen-Tzung
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [45] Deep Semi-Supervised and Self-Supervised Learning for Diabetic Retinopathy Detection
    Arrieta, Jose
    Perdomo, Oscar J.
    Gonzalez, Fabio A.
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [46] Active learning-assisted semi-supervised learning for fault detection and diagnostics with imbalanced dataset
    Peng, Xiaomeng
    Jin, Xiaoning
    Duan, Shiming
    Sankavaram, Chaitanya
    IISE TRANSACTIONS, 2023, 55 (07) : 672 - 686
  • [47] Detection of Interictal epileptiform discharges with semi-supervised deep learning
    de Sousa, Ana Maria Amaro
    van Putten, Michel J. A. M.
    van den Berg, Stephanie
    Haeri, Maryam Amir
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [48] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [49] Semi-Supervised Exemplar Learning for Object Detection in Aerial Imagery
    Overbey, Lucas A.
    Lyle, Jamie
    Pan, Jean
    Holt, Branson
    Jaegar, Alan
    Jaeger, Ryan
    van Epps, Todd
    Ruane, Martin
    GEOSPATIAL INFORMATICS XI, 2021, 11733
  • [50] CONTEXT-AWARE CHANGE DETECTION WITH SEMI-SUPERVISED LEARNING
    Yadav, Ritu
    Nascetti, Andrea
    Ban, Yifang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5754 - 5757