Crack propagation in anisotropic brittle materials: From a phase-field model to a shape optimization approach

被引:3
作者
Suchan, Tim [1 ]
Kandekar, Chaitanya [1 ]
Weber, Wolfgang E. [1 ]
Welker, Kathrin [2 ]
机构
[1] Univ Fed Armed Forces Hamburg, Helmut Schmidt Univ, Struct Anal, Holstenhofweg 85, D-22043 Hamburg, Germany
[2] Tech Univ Bergakad Freiberg, Math Optimizat, Akad Str 6, D-09599 Freiberg, Germany
关键词
Shape optimization; Phase-field method; Griffith's criterion; Anisotropic material; Shape space; FRACTURE; FORMULATION; MANIFOLDS; METRICS; SPACES;
D O I
10.1016/j.engfracmech.2024.110065
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The phase -field method is based on the energy minimization principle which is a geometric method for modeling diffusive cracks that are popularly implemented with irreversibility based on Griffith 's criterion. This method requires a length -scale parameter that smooths the sharp discontinuity, which influences the diffuse band and results in mesh -dependent fracture propagation results. Recently, a novel approach based on the optimization on Riemann ian shape spaces has been proposed, where the crack path is realized by techniques from shape optimization. This approach requires the shape derivative, which is derived in a continuous sense and used for a gradient -based algorithm to minimize the energy of the system. In this paper, the novel approach based on shape optimization is presented, followed by an assessment of the predicted crack path in both isotropic and anisotropic brittle material using numerical calculations from a phase -field model.
引用
收藏
页数:16
相关论文
共 78 条
[61]   ALGORITHMIC ASPECTS OF MULTIGRID METHODS FOR OPTIMIZATION IN SHAPE SPACES [J].
Siebenborn, Martin ;
Welker, Kathrin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) :B1156-B1177
[62]   A fracture-controlled path-following technique for phase-field modeling of brittle fracture [J].
Singh, N. ;
Verhoosel, C. V. ;
de Borst, R. ;
van Brummelen, E. H. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 113 :14-29
[63]  
Soto O, 2004, 42 AIAA AER SCI M EX, P1, DOI DOI 10.2514/6.2004-112
[64]  
Soto O, 2003, 41 AER SCI M EXH, P299, DOI DOI 10.2514/6.2003-299
[65]  
Suchan T, 2023, Proc Appl Math Mech, V22, DOI [10.1002/pamm.202200124,e202200124, DOI 10.1002/PAMM.202200124,E202200124]
[66]   Phase field modeling of fracture in anisotropic brittle solids [J].
Teichtmeister, S. ;
Kienle, D. ;
Aldakheel, F. ;
Keip, M. -A. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 97 :1-21
[67]   Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials [J].
Thanh-Tung Nguyen ;
Rethore, Julien ;
Yvonnet, Julien ;
Baietto, Marie-Christine .
COMPUTATIONAL MECHANICS, 2017, 60 (02) :289-314
[68]   Numerical analysis perspective in structural shape optimization: A review post 2000 [J].
Upadhyay, Bhavik D. ;
Sonigra, Sunil S. ;
Daxini, Sachin D. .
ADVANCES IN ENGINEERING SOFTWARE, 2021, 155
[69]   Phase-field models for brittle and cohesive fracture [J].
Vignollet, Julien ;
May, Stefan ;
de Borst, Rene ;
Verhoosel, Clemens V. .
MECCANICA, 2014, 49 (11) :2587-2601
[70]  
Voigt W., 1910, Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik), DOI DOI 10.1007/978-3-663-15884-4