Experimental and numerical study on flexural performance of ultra-high performance concrete frame beams reinforced with steel-FRP composite bars

被引:0
|
作者
Zhang, Zhiwen [1 ,2 ]
Ashour, Ashraf [3 ]
Ge, Wenjie [1 ,2 ]
Sushant, Subedi [1 ]
Yao, Shan [4 ]
Luo, Laiyong [5 ]
Cao, Dafu [1 ]
Li, Shengcai [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Inst Engn Struct & Disaster Prevent & Mitigat, Yangzhou 225127, Peoples R China
[3] Univ Bradford, Fac Engn & Informat, Bradford BD71DP, England
[4] Gansu Engn Design Res Inst Co Ltd, Lanzhou 730030, Peoples R China
[5] Jiangsu Yangjian Grp Co Ltd, Yangzhou 225002, Peoples R China
关键词
SFCB-UHPC frame beam; Flexural performance; Flexural test; Finite element method; Parametric study; BEHAVIOR;
D O I
10.1016/j.engstruct.2024.119012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the bending tests of four ultra-high performance concrete (UHPC) frame beams and one normal strength concrete (NSC) frame beam, all reinforced with steel-FRP composite bars (SFCBs). A comprehensive analysis was carried out, encompassing evaluation of the failure mode, crack propagation, bearing capacity, deformation, strain response, and plastic rotational capacity of the frame beams. Investigating the effects of concrete type, reinforcement type, and beam-end reinforcement ratio on the flexural performance of the frame beams was a key aspect of this study. A three-dimensional finite element (FE) model of the frame beam was established and rigorously verified. The developed model enabled a detailed parametric analysis involving the steel ratio, the yield strength of the inner core steel bar, the elastic modulus of the FRP, and the ultimate tensile strength of the SFCB. The results indicated a consistent failure mode of all frame beams: crushing of concrete at the beam-end, initiating a sequence of plastic hinge occurrence starting at the beam-end and then progressing to mid-span. The substitution of normal strength concrete with UHPC significantly enhanced various aspects of the frame beams, including the flexural capacity, deformation, ductility, ultimate energy dissipation, and plastic rotational capacity, while inhibiting the generation and expansion of cracks. Notably, the plastic rotation angle of SFCB-UHPC frame beams was 4.9 times greater than those of steel-UHPC frame beams, emphasizing the effectiveness of SFCB in enhancing the beam-end plastic rotational capacity. A decrease in the beam-end reinforcement ratio significantly reduced the flexural capacity, ultimate energy dissipation, and beam-end plastic rotational capacity, while improving ductility. Additionally, the study established a formula for calculating the equivalent plastic hinge length, utilizing the relative compressive zone height and effective section height of the beam-end controlling section as variables, which demonstrated good alignment between predicted and experimental results.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Study on Flexural Performance of Reinforced Concrete Beams Strengthened with FRP Grid-PCM Composite Reinforcement
    Zhang, Zhimei
    Qin, Haixue
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [42] Shear performance of reinforced ultra-high performance concrete rectangular section beams
    Wang, Qiang
    Song, Hua-Lin
    Lu, Chun-Ling
    Jin, Ling-Zhi
    STRUCTURES, 2020, 27 : 1184 - 1194
  • [43] Flexural strength of ultra-high performance concrete beams with stainless steel wire mesh: experimental and finite element analysis
    Liu, Long
    Wan, Songqiang
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (03) : 416 - 435
  • [44] Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs
    Wang, Yan
    Shao, Xudong
    Cao, Junhui
    Zhao, Xudong
    Qiu, Minghong
    ENGINEERING STRUCTURES, 2021, 231
  • [45] Flexural bearing capacity of reinforced concrete beams reinforced with carbon fiber reinforced plastics strips and ultra-high performance concrete layers
    Liu, Long
    Wan, Songqiang
    INTERNATIONAL JOURNAL OF BUILDING PATHOLOGY AND ADAPTATION, 2024, 42 (06) : 1126 - 1146
  • [46] Experimental study on degradation of flexural performance of corroded stainless steel bars reinforced concrete beam
    Sun X.
    Wang H.
    Yu F.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2021, 42 (06): : 160 - 168
  • [47] Flexural cracks in steel fiber-reinforced lightweight aggregate concrete beams reinforced with FRP bars
    Liu, Xi
    Sun, Yijia
    Wu, Tao
    Liu, Yang
    COMPOSITE STRUCTURES, 2020, 253 (253)
  • [48] Flexural performance of reinforced concrete beams strengthened with FRP-reinforced geopolymer matrix: Numerical validation and parametric study
    Tang, Ting-Ting
    Peng, Kai-Di
    Huang, Jun-Qi
    Guo, Dong
    Huang, Bo-Tao
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (02) : 269 - 287
  • [49] Flexural performance of concrete beams reinforced by gfrp bars and strengthened by cfrp sheets
    Hassan, Hassan Falah
    Medhlom, Mu'taz Kadhim
    Ahmed, Abdullah Sinan
    Al-Dahlaki, Mohammed Husein
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 13
  • [50] Experimental and Numerical Study on Flexural Performance of a Novel Steel-Encased Concrete Composite Beam
    Cao, Li-Lin
    Li, Ye-Jun
    Dhanasekar, Manicka
    Lu, Chun-Hua
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (05) : 1837 - 1848