Experimental and numerical study on flexural performance of ultra-high performance concrete frame beams reinforced with steel-FRP composite bars

被引:0
|
作者
Zhang, Zhiwen [1 ,2 ]
Ashour, Ashraf [3 ]
Ge, Wenjie [1 ,2 ]
Sushant, Subedi [1 ]
Yao, Shan [4 ]
Luo, Laiyong [5 ]
Cao, Dafu [1 ]
Li, Shengcai [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Inst Engn Struct & Disaster Prevent & Mitigat, Yangzhou 225127, Peoples R China
[3] Univ Bradford, Fac Engn & Informat, Bradford BD71DP, England
[4] Gansu Engn Design Res Inst Co Ltd, Lanzhou 730030, Peoples R China
[5] Jiangsu Yangjian Grp Co Ltd, Yangzhou 225002, Peoples R China
关键词
SFCB-UHPC frame beam; Flexural performance; Flexural test; Finite element method; Parametric study; BEHAVIOR;
D O I
10.1016/j.engstruct.2024.119012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the bending tests of four ultra-high performance concrete (UHPC) frame beams and one normal strength concrete (NSC) frame beam, all reinforced with steel-FRP composite bars (SFCBs). A comprehensive analysis was carried out, encompassing evaluation of the failure mode, crack propagation, bearing capacity, deformation, strain response, and plastic rotational capacity of the frame beams. Investigating the effects of concrete type, reinforcement type, and beam-end reinforcement ratio on the flexural performance of the frame beams was a key aspect of this study. A three-dimensional finite element (FE) model of the frame beam was established and rigorously verified. The developed model enabled a detailed parametric analysis involving the steel ratio, the yield strength of the inner core steel bar, the elastic modulus of the FRP, and the ultimate tensile strength of the SFCB. The results indicated a consistent failure mode of all frame beams: crushing of concrete at the beam-end, initiating a sequence of plastic hinge occurrence starting at the beam-end and then progressing to mid-span. The substitution of normal strength concrete with UHPC significantly enhanced various aspects of the frame beams, including the flexural capacity, deformation, ductility, ultimate energy dissipation, and plastic rotational capacity, while inhibiting the generation and expansion of cracks. Notably, the plastic rotation angle of SFCB-UHPC frame beams was 4.9 times greater than those of steel-UHPC frame beams, emphasizing the effectiveness of SFCB in enhancing the beam-end plastic rotational capacity. A decrease in the beam-end reinforcement ratio significantly reduced the flexural capacity, ultimate energy dissipation, and beam-end plastic rotational capacity, while improving ductility. Additionally, the study established a formula for calculating the equivalent plastic hinge length, utilizing the relative compressive zone height and effective section height of the beam-end controlling section as variables, which demonstrated good alignment between predicted and experimental results.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] EXPERIMENTAL STUDY AND FINITE ELEMENT ANALYSIS ON FLEXURAL PERFORMANCE OF HIGH-STRENGTH STEEL REINFORCED ULTRA-HIGH PERFORMANCE CONCRETE BEAM
    Liu Z.-Q.
    Ren B.-Y.
    Xue J.-Y.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (04): : 102 - 115
  • [22] Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concrete composite beam
    Ze Mo
    Jiangrui Qiu
    Hanbin Xu
    Lanlan Xu
    Yuqing Hu
    Frontiers of Structural and Civil Engineering, 2023, 17 : 704 - 721
  • [23] Experimental study on flexural performance of steel-reinforced concrete slim floor beams
    Yu, Yunlong
    Wei, Bo
    Yang, Yong
    Xue, Yicong
    Xue, Hao
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (11) : 2406 - 2417
  • [24] Flexural performance of ultra-high performance concrete beams produced with granite manufactured sand
    Qi, Jianan
    Jiao, Yang
    Liu, Chen
    Wang, Jingquan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024,
  • [25] Flexural performance of prefabricated U-shaped UHPC permanent formwork-concrete composite beams reinforced with FRP bars
    Ge, Wenjie
    Zhang, Zhiwen
    Ashour, Ashraf
    Guan, Zhongwei
    Jiang, Hongbo
    Sun, ChuanZhi
    Qiu, Linfeng
    Yao, Shan
    Cao, Dafu
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2023, 23 (02)
  • [26] Experimental study on flexural performance of partially precast steel reinforced concrete beams
    Yang, Yong
    Xue, Yicong
    Yu, Yunlong
    Ma, Ning
    Shao, Yongjian
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2017, 133 : 192 - 201
  • [27] Experimental study on flexural behavior of partially precast high-strength steel reinforced ultra-high performance concrete beam
    Hao, Ning
    Yang, Yong
    Xue, Yicong
    Feng, Shiqiang
    Yu, Yunlong
    Wang, Chen
    Li, Yanchao
    ENGINEERING STRUCTURES, 2023, 284
  • [28] Experimental study on the flexural performance of reinforced concrete beams strengthened by composite method
    Tang Y.
    Lu H.
    Zou Y.
    Zeng Y.
    Wu G.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2020, 50 (05): : 822 - 830
  • [29] Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members
    Paschalis, Spyridon A.
    Lampropoulos, Andreas P.
    Tsioulou, Ourania
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 186 : 351 - 366
  • [30] Experimental and numerical investigations on flexural performance of ultra-high-performance concrete (UHPC) beams with wet joints
    Feng, Zheng
    Li, Chuanxi
    Ke, Lu
    Yoo, Doo-Yeol
    STRUCTURES, 2022, 45 : 199 - 213