Experimental and numerical study on flexural performance of ultra-high performance concrete frame beams reinforced with steel-FRP composite bars

被引:0
作者
Zhang, Zhiwen [1 ,2 ]
Ashour, Ashraf [3 ]
Ge, Wenjie [1 ,2 ]
Sushant, Subedi [1 ]
Yao, Shan [4 ]
Luo, Laiyong [5 ]
Cao, Dafu [1 ]
Li, Shengcai [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Inst Engn Struct & Disaster Prevent & Mitigat, Yangzhou 225127, Peoples R China
[3] Univ Bradford, Fac Engn & Informat, Bradford BD71DP, England
[4] Gansu Engn Design Res Inst Co Ltd, Lanzhou 730030, Peoples R China
[5] Jiangsu Yangjian Grp Co Ltd, Yangzhou 225002, Peoples R China
关键词
SFCB-UHPC frame beam; Flexural performance; Flexural test; Finite element method; Parametric study; BEHAVIOR;
D O I
10.1016/j.engstruct.2024.119012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the bending tests of four ultra-high performance concrete (UHPC) frame beams and one normal strength concrete (NSC) frame beam, all reinforced with steel-FRP composite bars (SFCBs). A comprehensive analysis was carried out, encompassing evaluation of the failure mode, crack propagation, bearing capacity, deformation, strain response, and plastic rotational capacity of the frame beams. Investigating the effects of concrete type, reinforcement type, and beam-end reinforcement ratio on the flexural performance of the frame beams was a key aspect of this study. A three-dimensional finite element (FE) model of the frame beam was established and rigorously verified. The developed model enabled a detailed parametric analysis involving the steel ratio, the yield strength of the inner core steel bar, the elastic modulus of the FRP, and the ultimate tensile strength of the SFCB. The results indicated a consistent failure mode of all frame beams: crushing of concrete at the beam-end, initiating a sequence of plastic hinge occurrence starting at the beam-end and then progressing to mid-span. The substitution of normal strength concrete with UHPC significantly enhanced various aspects of the frame beams, including the flexural capacity, deformation, ductility, ultimate energy dissipation, and plastic rotational capacity, while inhibiting the generation and expansion of cracks. Notably, the plastic rotation angle of SFCB-UHPC frame beams was 4.9 times greater than those of steel-UHPC frame beams, emphasizing the effectiveness of SFCB in enhancing the beam-end plastic rotational capacity. A decrease in the beam-end reinforcement ratio significantly reduced the flexural capacity, ultimate energy dissipation, and beam-end plastic rotational capacity, while improving ductility. Additionally, the study established a formula for calculating the equivalent plastic hinge length, utilizing the relative compressive zone height and effective section height of the beam-end controlling section as variables, which demonstrated good alignment between predicted and experimental results.
引用
收藏
页数:20
相关论文
共 38 条
[21]   Flexural performance of prefabricated U-shaped UHPC permanent formwork-concrete composite beams reinforced with FRP bars [J].
Ge, Wenjie ;
Zhang, Zhiwen ;
Ashour, Ashraf ;
Guan, Zhongwei ;
Jiang, Hongbo ;
Sun, ChuanZhi ;
Qiu, Linfeng ;
Yao, Shan ;
Cao, Dafu .
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2023, 23 (02)
[22]   Study on the workability, mechanical property and water absorption of reactive powder concrete [J].
Ge, Wenjie ;
Wang, Anlian ;
Zhang, Zhiwen ;
Ge, Yue ;
Chen, Yiwen ;
Li, Wei ;
Jiang, Hongbo ;
Shuai, Huaguo ;
Sun, Chuanzhi ;
Yao, Shan ;
Qiu, Linfeng .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
[23]   Tension and bonding behaviour of steel-FRP composite bars subjected to the coupling effects of chloride corrosion and load [J].
Ge, Wenjie ;
Han, MuYang ;
Guan, Zhongwei ;
Zhang, Pu ;
Ashour, Ashraf ;
Li, Wei ;
Lu, Weigang ;
Cao, Dafu ;
Yao, Shan .
CONSTRUCTION AND BUILDING MATERIALS, 2021, 296
[24]   Flexural behaviors of hybrid concrete beams reinforced with BFRP bars and steel bars [J].
Ge, Wenjie ;
Zhang, Jiwen ;
Cao, Dafu ;
Tu, Yongming .
CONSTRUCTION AND BUILDING MATERIALS, 2015, 87 :28-37
[25]  
Majid MAK, 2022, Eng Struct, V262
[26]  
[秦卫红 Qin Weihong], 2022, [土木工程学报, China Civil Engineering Journal], V55, P21
[27]   COMPOSITION OF REACTIVE POWDER CONCRETES [J].
RICHARD, P ;
CHEYREZY, M .
CEMENT AND CONCRETE RESEARCH, 1995, 25 (07) :1501-1511
[28]   Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete members [J].
Shamass, Rabee ;
Cashell, K. A. .
ENGINEERING STRUCTURES, 2020, 220
[29]  
Sidoroff F., 1981, Physical Non-linearities in Structural Analysis
[30]   Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams [J].
Singh, M. ;
Sheikh, A. H. ;
Ali, M. S. Mohamed ;
Visintin, P. ;
Griffith, M. C. .
CONSTRUCTION AND BUILDING MATERIALS, 2017, 138 :12-25