Advanced design for anti-freezing aqueous zinc-ion batteries

被引:25
作者
Deng, Shenzhen [1 ]
Xu, Bingang [1 ]
Zhao, Jingxin [1 ]
Fu, Hong [2 ]
机构
[1] Hong Kong Polytech Univ, Nanotechnol Ctr, Sch Fash & Text, Kowloon, Hong Kong 999077, Peoples R China
[2] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
关键词
Aqueous zinc -ion batteries; Low; -temperature; Design strategies; Review and perspective; DEEP EUTECTIC SOLVENT; IN-SALT ELECTROLYTE; RECENT PROGRESS; RECHARGEABLE BATTERIES; HYDROGEL ELECTROLYTES; CATHODE MATERIAL; WATER; PERFORMANCE; STORAGE; MACROMOLECULES;
D O I
10.1016/j.ensm.2024.103490
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc -ion batteries (AZIBs) have attracted much attention, and are considered to be one of the ideal energy storage devices owing to their safety, environmental friendliness, and low cost. However, their inferior low -temperature performance limits their practical applications. Therefore, improving the low -temperature performance of AZIBs is of great significance. Over the past few years, there is a rapid growing number of publications and citations in the field where some latest advanced design strategies have been proposed for antifreezing AZIBs such as deep eutectic sol electrolyte and chaotropic salt electrolyte which, however, have not been reviewed. Therefore, a timely review of advanced design strategies for anti -freezing AZIBs is urgently needed. Herein, the latest progress about advanced design strategies for the anti -freezing AZIBs is systematically reviewed. First, we analyze effects of temperature on the performance of battery from the thermodynamic and kinetics factor in depth. Then, we propose three main mechanisms for improving the anti -freezing property of aqueous electrolytes, including breaking the free water hydrogen bonds, confining the free water hydrogen bonds, and reducing the free water content. Afterwards, advanced design strategies for anti -freezing AZIBs are thoroughly summarized from the perspectives of electrolyte optimization and electrode material design. In the end, our perspectives on potential directions are proposed for future development and practical applications of anti -freezing AZIBs.
引用
收藏
页数:25
相关论文
共 248 条
[11]   Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes [J].
Cao, Longsheng ;
Li, Dan ;
Soto, Fernando A. ;
Ponce, Victor ;
Zhang, Bao ;
Ma, Lu ;
Deng, Tao ;
Seminario, Jorge M. ;
Hu, Enyuan ;
Yang, Xiao-Qing ;
Balbuena, Perla B. ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) :18845-18851
[12]   Recent advances of hydrogel electrolytes in flexible energy storage devices [J].
Chan, Cheuk Ying ;
Wang, Ziqi ;
Jia, Hao ;
Ng, Pui Fai ;
Chow, Lung ;
Fei, Bin .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (04) :2043-2069
[13]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[14]   Roadmap for advanced aqueous batteries: From design of materials to applications [J].
Chao, Dongliang ;
Zhou, Wanhai ;
Xie, Fangxi ;
Ye, Chao ;
Li, Huan ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SCIENCE ADVANCES, 2020, 6 (21)
[15]   Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery [J].
Chen, Jingjuan ;
Wang, Suqing ;
Ding, Liangxin ;
Jiang, Yanbin ;
Wang, Haihui .
JOURNAL OF MEMBRANE SCIENCE, 2014, 461 :22-27
[16]   Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer [J].
Chen, Jizhang ;
Zhou, Weijun ;
Quan, Yuhui ;
Liu, Bo ;
Yang, Ming ;
Chen, Minfeng ;
Han, Xiang ;
Xu, Xinwu ;
Zhang, Peixin ;
Shi, Siqi .
ENERGY STORAGE MATERIALS, 2022, 53 :629-637
[17]   Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO2 Batteries [J].
Chen, Minfeng ;
Chen, Jizhang ;
Zhou, Weijun ;
Han, Xiang ;
Yao, Yagang ;
Wong, Ching-Ping .
ADVANCED MATERIALS, 2021, 33 (09)
[18]   Anti-freezing flexible aqueous Zn-MnO2 batteries working at-35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte [J].
Chen, Minfeng ;
Zhou, Weijun ;
Wang, Anran ;
Huang, Aixiang ;
Chen, Jizhang ;
Xu, Junling ;
Wong, Ching-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (14) :6828-6841
[19]   Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies [J].
Chen, Minghua ;
Xie, Shian ;
Zhao, Xingyu ;
Zhou, Wanhai ;
Li, Yu ;
Zhang, Jiawei ;
Chen, Zhen ;
Chao, Dongliang .
ENERGY STORAGE MATERIALS, 2022, 51 :683-718
[20]   Polypyrrole-Coated K2Mn[Fe(CN)6] Stabilizing Its Interfaces and Inhibiting Irreversible Phase Transition during the Zinc Storage Process in Aqueous Batteries [J].
Chen, Mojing ;
Li, Xiaoqiang ;
Yan, Yujiao ;
Yang, Yanting ;
Xu, Qunjie ;
Liu, Haimei ;
Xia, Yongyao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) :1092-1101