Predictive Modelling of Financial Distress of Slovak Companies Using Machine Learning Techniques

被引:0
|
作者
Durica, Marek [1 ]
Svabova, Lucia [2 ]
Kramarova, Katarina [2 ]
机构
[1] Univ Zilina, Dept Quantitat Methods & Econ Informat, Fac Operat & Econ Transport & Commun, Univ 1, Zilina 01026, Slovakia
[2] Univ Zilina, Dept Econ, Fac Operat & Econ Transport & Commun, Univ 1, Zilina 01026, Slovakia
来源
ECONOMICS, MANAGEMENT & BUSINESS 2023: CONTEMPORARY ISSUES, INSIGHTS AND NEW CHALLENGES | 2023年
关键词
prediction model; financial distress; machine learning; prediction ability; confusion matrix; BANKRUPTCY PREDICTION;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Research background: Financial distress prediction is one of the key tasks of risk management and is still a widely discussed topic by many authors. Identification of the financial distress situation at least one year in advance is necessary for the company's management to implement measures that could alleviate or eliminate this situation. Purpose of the article: The paper aims at predictive modelling of the financial distress of companies operating in the conditions of the Slovak economy, regardless of the economic segment. The models are created using real data from real Slovak companies and can potentially be effective and universal tools for ex-ante analysis in Slovakia. Methods: Models are created using several machine learning techniques, namely Support Vector Machines, k-Nearest Neighbours, Bayesian Networks, and Genetic Algorithms. These algorithms provide a very good predictive ability of the models. A precisely prepared dataset of tens of thousands of Slovak companies is used to create models. The quality of the models is analysed and compared based on several evaluation metrics calculated from the confusion matrix and the value of AUC. Findings & Value added: The achieved results point to the potential of the tools used in modelling financial distress. The model created by the Support Vector Machines technique best identifies the financial distress of Slovak companies because it correctly classifies almost 87% of companies.
引用
收藏
页码:780 / 786
页数:7
相关论文
共 50 条
  • [21] Predictive Analysis of Cervical Cancer Using Machine Learning Techniques
    Kumawat, Gaurav
    Vishwakarma, Santosh Kumar
    Chakrabarti, Prasun
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 501 - 516
  • [22] Predictive Modeling of Wine Quality using Machine Learning Techniques
    Bed, Mohit
    Gill, Kanwarpartap Singh
    Sharma, Neha
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1017 - 1022
  • [23] Predictive models for diabetes mellitus using machine learning techniques
    Hang Lai
    Huaxiong Huang
    Karim Keshavjee
    Aziz Guergachi
    Xin Gao
    BMC Endocrine Disorders, 19
  • [24] A Predictive Analysis of Heart Rates Using Machine Learning Techniques
    Oyeleye, Matthew
    Chen, Tianhua
    Titarenko, Sofya
    Antoniou, Grigoris
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [25] The implication of machine learning for financial solvency prediction: an empirical analysis on public listed companies of Bangladesh
    Abdullah, Mohammad
    JOURNAL OF ASIAN BUSINESS AND ECONOMIC STUDIES, 2021, 28 (04): : 303 - 320
  • [26] Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam
    Tran, Kim Long
    Le, Hoang Anh
    Nguyen, Thanh Hien
    Nguyen, Duc Trung
    DATA, 2022, 7 (11)
  • [27] Corporation financial distress prediction with deep learning: analysis of public listed companies in Malaysia
    Halim, Zulkifli
    Shuhidan, Shuhaida Mohamed
    Sanusi, Zuraidah Mohd
    BUSINESS PROCESS MANAGEMENT JOURNAL, 2021, 27 (04) : 1163 - 1178
  • [28] The possibility of using prediction models for monitoring the financial health of Slovak companies
    Weissova, Ivana
    Durica, Marek
    MANAGING AND MODELLING OF FINANCIAL RISKS - 8TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PT III, 2016, : 1062 - 1070
  • [29] Prediction of Financial Statement Fraud using Machine Learning Techniques in UAE
    El-Bannany, Magdi
    Dehghan, Ahlam H.
    Khedr, Ahmed M.
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 649 - 654
  • [30] Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers
    Miswan, Nor Hamizah
    Chan, Chee Seng
    Ng, Chong Guan
    INTELLIGENT DATA ANALYSIS, 2021, 25 (05) : 1073 - 1098