The covariety of numerical semigroups with fixed Frobenius number

被引:1
作者
Moreno-Frias, M. A. [1 ]
Rosales, J. C. [2 ]
机构
[1] Univ Cadiz, Dept Math, Poligono Rio San Pedro S-N, Puerto Real 11510, Cadiz, Spain
[2] Univ Granada, Dept Algebra, Ave Fuente Nueva, Granada 18071, Granada, Spain
关键词
Numerical semigroup; Covariety; Frobenius number; Genus; Rank; Multiplicity; Algorithm; LOCAL-RINGS;
D O I
10.1007/s10801-024-01342-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by m(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm m}(S)$$\end{document} the multiplicity of a numerical semigroup S. A covariety is a nonempty family C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document} of numerical semigroups that fulfils the following conditions: there is the minimum of C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C},$$\end{document} the intersection of two elements of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document} is again an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document} and S\{m(S)}is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\backslash \{{\mathrm m}(S)\}\in \mathscr {C}$$\end{document} for all S is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in \mathscr {C}$$\end{document} such that S not equal min(C).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\ne \min (\mathscr {C}).$$\end{document} In this work we describe an algorithmic procedure to compute all the elements of C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}.$$\end{document} We prove that there exists the smallest element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}$$\end{document} containing a set of positive integers. We show that A(F)={S divided by Sis a numerical semigroup with Frobenius numberF}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {A}(F)=\{S\mid S \hbox { is a numerical semigroup with Frobenius number }F\}$$\end{document} is a covariety, and we particularize the previous results in this covariety. Finally, we will see that there is the smallest covariety containing a finite set of numerical semigroups.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 15 条