Multistable Memristor Synapse-Based Coupled Bi-Hopfield Neuron Model: Dynamic Analysis, Microcontroller Implementation and Image Encryption

被引:4
作者
Tamba, Victor Kamdoum [1 ,2 ]
Biamou, Arsene Loic Mbanda [2 ]
Pham, Viet-Thanh [3 ]
Grassi, Giuseppe [4 ]
机构
[1] Univ Dschang, IUT Fotso Victor Bandjoun, Dept Telecommun & Network Engn, POB 134, Bandjoun, Cameroon
[2] Univ Dschang, IUT FV Bandjoun, Res Unit Automat & Appl Comp, Dept Elect Engn, POB 134, Bandjoun, Cameroon
[3] Ind Univ Ho Chi Minh City, Fac Elect Technol, Ho Chi Minh City 70000, Vietnam
[4] Univ Salento, Dept Engn Innovat, I-73100 Lecce, Italy
关键词
Hopfield neural network model; multistable memristor synapse; dynamic analysis; numerical simulations; microcontroller-based implementation; biomedical image encryption; ALGORITHM; NETWORK; CHAOS;
D O I
10.3390/electronics13122414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The memristor, a revolutionary electronic component, mimics both neural synapses and electromagnetic induction phenomena. Recent study challenges are the development of effective neural models and discovering their dynamics. In this study, we propose a novel Hopfield neural network model leveraging multistable memristors, showcasing its efficacy in encoding biomedical images. We investigate the equilibrium states and dynamic behaviors of our designed model through comprehensive numerical simulations, revealing a rich array of phenomena including periodic orbits, chaotic dynamics, and homogeneous coexisting attractors. The practical realization of our model is achieved using a microcontroller, with experimental results demonstrating strong agreement with theoretical analyses. Furthermore, harnessing the chaos inherent in the neural network, we develop a robust biomedical image encryption technique, validated through rigorous computational performance tests.
引用
收藏
页数:19
相关论文
共 38 条
  • [1] Alway A., 2023, Decis. Anal., V9, DOI [10.1016/j.dajour.2023.100354, DOI 10.1016/J.DAJOUR.2023.100354]
  • [2] Memristor-cascaded hopfield neural network with attractor scroll growth and STM32 hardware experiment
    Bao, Han
    Ding, Ruoyu
    Liu, Xiaofeng
    Xu, Quan
    [J]. INTEGRATION-THE VLSI JOURNAL, 2024, 96
  • [3] A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps
    Behnia, S.
    Akhshani, A.
    Ahadpour, S.
    Mahmodi, H.
    Akhavan, A.
    [J]. PHYSICS LETTERS A, 2007, 366 (4-5) : 391 - 396
  • [4] Recognition capabilities of a Hopfield model with auxiliary hidden neurons
    Benedetti, Marco
    Dotsenko, Victor
    Fischetti, Giulia
    Marinari, Enzo
    Oshanin, Gleb
    [J]. PHYSICAL REVIEW E, 2021, 103 (06)
  • [5] Initial states-induced complex behaviors in a memristive coupled Hopfield neural network model and its application in biomedical image encryption
    Biamou, Arsene Loic Mbanda
    Tamba, Victor Kamdoum
    Kuate, Guy Chance Gildas
    Tagne, Francois Kapche
    Takougang, Armand Cyrille Nzeukou
    Fotsin, Hilaire Bertrand
    [J]. PHYSICA SCRIPTA, 2024, 99 (01)
  • [6] A novel chaos-based image encryption algorithm using DNA sequence operations
    Chai, Xiuli
    Chen, Yiran
    Broyde, Lucie
    [J]. OPTICS AND LASERS IN ENGINEERING, 2017, 88 : 197 - 213
  • [7] Memristor Synapse-Driven Simplified Hopfield Neural Network: Hidden Dynamics, Attractor Control, and Circuit Implementation
    Chen, Chengjie
    Min, Fuhong
    Cai, Jianming
    Bao, Han
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (05) : 2308 - 2319
  • [8] Analog/digital circuit simplification for Hopfield neural network
    Chen, Chengjie
    Min, Fuhong
    Hu, Fei
    Cai, Jianming
    Zhang, Yunzhen
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 173
  • [9] ReLU-type Hopfield neural network with analog hardware implementation
    Chen, Chengjie
    Min, Fuhong
    Zhang, Yunzhen
    Bao, Han
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 167
  • [10] Memristive bi-neuron Hopfield neural network with coexisting symmetric behaviors
    Chen, Chengjie
    Min, Fuhong
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (07)