Robust Calibration with Multi-domain Temperature Scaling

被引:0
|
作者
Yu, Yaodong [1 ]
Bates, Stephen [1 ]
Ma, Yi [1 ]
Jordan, Michael I. [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uncertainty quantification is essential for the reliable deployment of machine learning models to high-stakes application domains. Uncertainty quantification is all the more challenging when training distribution and test distribution are different, even if the distribution shifts are mild. Despite the ubiquity of distribution shifts in real-world applications, existing uncertainty quantification approaches mainly study the in-distribution setting where the train and test distributions are the same. In this paper, we develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains. Our proposed method-multi-domain temperature scaling-uses the heterogeneity in the domains to improve calibration robustness under distribution shift. Through experiments on three benchmark data sets, we find our proposed method outperforms existing methods as measured on both in-distribution and out-of-distribution test sets.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An Empirical Study on Multi-domain Robust Semantic Segmentation
    Liu, Yajie
    Ge, Pu
    Liu, Qingjie
    Fan, Shichao
    Wang, Yunhong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (10) : 4289 - 4304
  • [2] Scaling Up Multi-domain Semantic Segmentation with Sentence Embeddings
    Yin, Wei
    Liu, Yifan
    Shen, Chunhua
    Sun, Baichuan
    van den Hengel, Anton
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (09) : 4036 - 4051
  • [3] Scaling behavior of dynamic hysteresis in multi-domain spin systems
    Liu, JM
    Chan, HL
    Choy, CL
    MATERIALS LETTERS, 2002, 52 (03) : 213 - 219
  • [4] Causal Confusion Reduction for Robust Multi-Domain Dialogue Policy
    Rohmatillah, Mahdin
    Chien, Jen-Tzung
    INTERSPEECH 2021, 2021, : 3221 - 3225
  • [5] A ROBUST CONTRASTIVE ALIGNMENT METHOD FOR MULTI-DOMAIN TEXT CLASSIFICATION
    Li, Xuefeng
    Lei, Hao
    Wang, Liwen
    Dong, Guanting
    Zhao, Jinzheng
    Liu, Jiachi
    Xu, Weiran
    Zhang, Chunyun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7827 - 7831
  • [6] Scaling Multi-Domain Dialogue State Tracking via Query Reformulation
    Rastogi, Pushpendre
    Gupta, Arpit
    Chen, Tongfei
    Mathias, Lambert
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES(NAACL HLT 2019), VOL. 2 (INDUSTRY PAPERS), 2019, : 97 - 105
  • [7] GPGPU Power Modeling for Multi-Domain Voltage-Frequency Scaling
    Guerreiro, Joao
    Ilic, Aleksandar
    Roma, Nuno
    Tomas, Pedro
    2018 24TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2018, : 789 - 800
  • [8] Scaling Up Deep Reinforcement Learning for Multi-Domain Dialogue Systems
    Cuayahuitl, Heriberto
    Yu, Seunghak
    Williamson, Ashley
    Carse, Jacob
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3339 - 3346
  • [9] Adaptive temperature scaling for Robust calibration of deep neural networks
    Balanya, Sergio A.
    Maronas, Juan
    Ramos, Daniel
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (14): : 8073 - 8095
  • [10] CDistNet: Perceiving Multi-domain Character Distance for Robust Text Recognition
    Tianlun Zheng
    Zhineng Chen
    Shancheng Fang
    Hongtao Xie
    Yu-Gang Jiang
    International Journal of Computer Vision, 2024, 132 : 300 - 318