Hilbert-Type Operators Acting on Bergman Spaces

被引:1
|
作者
Aguilar-Hernandez, Tanausu [1 ,2 ]
Galanopoulos, Petros [3 ]
Girela, Daniel [4 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Camino Descubrimientos,s-n, Seville 41092, Spain
[2] Univ Seville, Escuela Tecn Super Ingn, IMUS, Camino Descubrimientos,s-n, Seville 41092, Spain
[3] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[4] Univ Malaga, Anal Matemat, Malaga 29071, Spain
关键词
The Hilbert matrix; Generalized Hilbert operator; Bergman spaces; Duality; Carleson measures; Bounded operator; Compact operator; Schatten classes; COMPACT COMPOSITION OPERATORS; ANALYTIC-FUNCTIONS; HARDY-SPACES; MATRIX; THEOREM; DERIVATIVES;
D O I
10.1007/s40315-024-00560-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If mu is a positive Borel measure on the interval [0, 1) we let H-mu be the Hankel matrix H-mu=(mu(n,k))(n,k >= 0) with entries mu(n, k)=mu(n+k), where, for n=0,1,2,& mldr;, mu(n) denotes the moment of order n of mu. This matrix formally induces an operator, called also H-mu, on the space of all analytic functions in the unit disc D as follows: If f is an analytic function in D, f(z)=& sum;(infinity)(k=0)a(k)z(k), z is an element of D, H-mu(f) is formally defined by H-mu(f)(z)=& sum;(infinity )(n=0)(& sum;(infinity)(k=0)mu(n+k)a(k)) z(n), z is an element of D. This is a natural generalization of the classical Hilbert operator. This paper is devoted to studying the operators H-mu acting on the Bergman spaces A(p), 1 <= p < infinity. Among other results, we give a complete characterization of those mu for which H-mu is bounded or compact on the space A(p) when p is either 1 or greater than 2. We also give a number of results concerning the boundedness and compactness of H-mu on A(p) for the other values of p, as well as on its membership in the Schatten classes S-p(A(2)).
引用
收藏
页数:26
相关论文
共 50 条
  • [1] ON THE HILBERT-TYPE OPERATORS ACTING FROM FUNCTION SPACES INTO SEQUENCE SPACES
    Jin, Jianjun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (06) : 1889 - 1903
  • [2] Hilbert-Type Operators Acting Between Weighted Fock Spaces
    Jianjun Jin
    Shuan Tang
    Xiaogao Feng
    Complex Analysis and Operator Theory, 2022, 16
  • [3] Hilbert-Type Operators Acting Between Weighted Fock Spaces
    Jin, Jianjun
    Tang, Shuan
    Feng, Xiaogao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (07)
  • [4] Hilbert type operators acting from the Bloch space into Bergman spaces
    Tang, Pengcheng
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025, 68 (01) : 205 - 225
  • [5] Generalized Hilbert matrix operators acting on Bergman spaces
    Bellavita, C.
    Daskalogiannis, V
    Miihkinen, S.
    Norrbo, D.
    Stylogiannis, G.
    Virtanen, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (09)
  • [6] Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces
    Shanli Ye
    Guanghao Feng
    Banach Journal of Mathematical Analysis, 2023, 17
  • [7] Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces
    Ye, Shanli
    Feng, Guanghao
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [8] HILBERT-TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS
    Krnic, Mario
    QUAESTIONES MATHEMATICAE, 2013, 36 (02) : 209 - 223
  • [9] Operators of Hilbert and Cesaro type acting on Dirichlet spaces
    Galanopoulos, Petros
    Girela, Daniel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [10] PRODUCT TYPE OPERATORS ACTING BETWEEN WEIGHTED BERGMAN SPACES AND BLOCH TYPE SPACES
    Liu, Zuoling
    Wulan, Hasi
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1327 - 1336