Precise prediction of CO2 separation performance of metal-organic framework mixed matrix membranes based on feature selection and machine learning

被引:16
作者
Yao, Lei [1 ]
Zhang, Zengzeng [1 ]
Li, Yong [1 ]
Zhuo, Jinxuan [1 ]
Chen, Zhe [2 ,3 ]
Lin, Zhidong [2 ,3 ]
Liu, Hanming [4 ]
Yao, Zhenjian [1 ]
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Peoples R China
[2] Wuhan Inst Technol, Sch Mat Sci & Engn, Wuhan 430205, Peoples R China
[3] Wuhan Inst Technol, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
[4] Clean Energy Res Inst, Natl Key Lab High Efficiency Flexible Coal Power G, China Huaneng Grp, Beijing 102209, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal -organic framework; Mixed matrix membrane; Machine learning; Artificial neural network; Carbon capture; NEURAL-NETWORK;
D O I
10.1016/j.seppur.2024.127894
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nowadays, the price of fossil fuels keeps setting new records, escalating continuing concerns about global warming from CO2 production from fuel combustion. As a promising membrane separation technique dealing with carbon capture, metal-organic framework (MOF) mixed matrix membranes (MMMs) have been extensively studied. Herein, a genetic algorithm (GA) optimized artificial neural network (ANN) was developed to form prediction model of MOF MMMs performances towards CO2/N2 separation. The MOF properties, polymer properties, and the operating conditions were used as the characteristic variables. To overcome the limitation, molecular descriptors were incorporated to reflect the physicochemical properties of polymers and target encoding was applied to digitalize the MOF and polymer types. In addition, recursive feature elimination algorithm was used to filter the optimal feature subset and Shapley additive explanations was utilized to analyze the feature importance. The results demonstrated that the model has a dramatically improved prediction performance than other machine learning methods.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Highly CO2 Selective Microporous Metal-Imidazolate Framework Based Mixed Matrix Membranes [J].
Ahmadi, Mandi ;
Tas, Ender ;
Kilic, Ayse ;
Kumbaraci, Volkan ;
Talinli, Naciye ;
Ahunbay, M. Goktug ;
Tantekin-Ersolmaz, S. Birgul .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) :35936-35946
[32]   Homochiral Metal-Organic Framework Based Mixed Matrix Membrane for Chiral Resolution [J].
Choi, Hwa-Jin ;
Koh, Dong-Yeun .
MEMBRANES, 2022, 12 (04)
[33]   Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO2 Separation [J].
Yuhan Wang ;
Yanxiong Ren ;
Yu Cao ;
Xu Liang ;
Guangwei He ;
Hanze Ma ;
Hongliang Dong ;
Xiao Fang ;
Fusheng Pan ;
Zhongyi Jiang .
Nano-Micro Letters, 2023, 15
[34]   Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO2 Separation [J].
Wang, Yuhan ;
Ren, Yanxiong ;
Cao, Yu ;
Liang, Xu ;
He, Guangwei ;
Ma, Hanze ;
Dong, Hongliang ;
Fang, Xiao ;
Pan, Fusheng ;
Jiang, Zhongyi .
NANO-MICRO LETTERS, 2023, 15 (01)
[35]   Preparation of Pebax based ternary mixed matrix membranes for enhancing CO2 transport and separation [J].
Zhang, Pengyu ;
Sun, Haoran ;
Sun, Qian ;
Dong, Ye ;
Zhang, Yijuan ;
Li, Run ;
Feng, Guoqing ;
Wang, Ruinan ;
Lian, Shaohan ;
Wang, Yu ;
Song, Chunfeng .
SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
[36]   CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids [J].
Han, Jiuli ;
Jiang, Haiyan ;
Zeng, Shaojuan ;
Bai, Yinge ;
Zhang, Xiangping ;
Bai, Lu .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
[37]   Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework [J].
Gong, Heqing ;
Tien Hoa Nguyen ;
Wang, Rong ;
Tae-Hyun Bae .
JOURNAL OF MEMBRANE SCIENCE, 2015, 495 :169-175
[38]   Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation [J].
Feng, Long ;
Zhang, Qiuning ;
Su, Jianwen ;
Ma, Bing ;
Wan, Yinji ;
Zhong, Ruiqin ;
Zou, Ruqiang .
NANOMATERIALS, 2024, 14 (01)
[39]   A comprehensive review of metal-organic frameworks sorbents and their mixed-matrix membranes composites for biogas cleaning and CO2/ CH4 separation [J].
Duma, Zama ;
Makgwane, Peter R. ;
Masukume, Mike ;
Swartbooi, Ashton ;
Rambau, Khavharendwe ;
Mehlo, Thembelihle ;
Mavhungu, Tshidzani .
MATERIALS TODAY SUSTAINABILITY, 2024, 27
[40]   Unlocking the potential of metal-organic frameworks-based mixed matrix membranes for hydrogen separation and purification [J].
Ahmad, Nor Naimah Rosyadah ;
Lee, Yang ;
Hamid, Mohamad Rezi Abdul ;
Ghazi, Tinia Idaty Mohd ;
Nasir, Rizwan ;
Leo, Choe Peng ;
Koh, Siaw Paw ;
Pasupuleti, Jagadeesh ;
Tiong, Sieh Kiong .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 128 :143-160