Plasmonic Toroidal Vortices

被引:2
|
作者
Yang, Da-Jie [1 ,2 ]
Li, Yang [3 ]
Zhang, Ye-Qi [1 ]
Liu, Lu [1 ]
Xie, Yuan-Hao [1 ]
Fu, Xingqiu [1 ]
Liu, Ji-Cai [1 ,2 ]
Wang, Qu-Quan [3 ,4 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Hebei Key Lab Phys & Energy Technol, Baoding 071000, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518045, Peoples R China
基金
中国国家自然科学基金;
关键词
plasmon; plasmonic toroidal vortex; radially-polarized beam; toroidal vortex; vortex ring; ORBITAL ANGULAR-MOMENTUM; BREATHING MODES; LIGHT;
D O I
10.1002/lpor.202400474
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Toroidal vortices, or vortex rings, are torus-shaped vortices observed in various fluid systems. Recently, optical toroidal vortices, novel solutions to Maxwell's equations, have been experimentally observed (Nat. Photonics, 2022, 16, 519). Thus, their nanoplasmonic counterparts, namely plasmonic toroidal vortices, are highly anticipated. This study aims to elucidate the generation and manifestation of plasmonic toroidal vortices. To achieve this, a technique involving the illumination of a gold nanotorus with a radially-polarized beam is employed. Notably, the plasmonic toroidal vortices exhibit a distinct photon flow trajectory along the minor radius of a nanotorus. This work presents an advancement in toroidal vortices within the plasmonic regime. The study reports the manifestation and formation of plasmonic toroidal vortices, a counterpart to toroidal vortices observed in fluid systems and recently in optics. Through illuminating a plasmonic nanotorus with a radially-polarized beam, a novel photon flow along the nanotorus's minor radius, identified as plasmonic toroidal vortex is observed. This finding contributes to the understanding of toroidal vortices within the plasmonic realm. image
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Compact device for the generation of toroidal spatiotemporal optical vortices
    Cheng, Jie
    Liu, Weichao
    Wu, Zelong
    Wan, Chenhao
    OPTICS LETTERS, 2024, 49 (16) : 4646 - 4649
  • [12] Toroidal polarization vortices in tightly focused beams with singularity
    Stafeev, S. S.
    Kotlyar, V. V.
    COMPUTER OPTICS, 2020, 44 (05) : 685 - +
  • [13] Observation of Chiral Symmetry Breaking in Toroidal Vortices of Light
    Chen, Wei
    Liu, Yuan
    Yu, An-Zhuo
    Cao, Han
    Hu, Wei
    Qiao, Wen
    Chen, Lin-Sen
    Lu, Yan-Qing
    PHYSICAL REVIEW LETTERS, 2024, 132 (15)
  • [14] Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum
    Gao, Zhi
    Voronine, Dmitri V.
    Sokolov, Alexei V.
    PHOTONICS, 2025, 12 (02)
  • [15] When Plasmonic Colloids Meet Optical Vortices-A Brief Review
    Kumar, G. V. Pavan
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2023, 61 (07) : 589 - 600
  • [16] Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens
    Kim, Hwi
    Park, Junghyun
    Cho, Seong-Woo
    Lee, Seung-Yeol
    Kang, Minsu
    Lee, Byoungho
    NANO LETTERS, 2010, 10 (02) : 529 - 536
  • [17] Beam Steering of Nonlinear Optical Vortices with Phase Gradient Plasmonic Metasurfaces
    Rong, Rong
    Li, Yang
    Wang, Mingjie
    Tang, Yutao
    Xu, Hongjie
    Li, Kingfai
    Li, Guixin
    Cao, Tun
    Chen, Shumei
    ACS PHOTONICS, 2023, 10 (09) : 3248 - 3254
  • [18] Broadband Generation of Fractional Perfect Optical Vortices via Plasmonic Metasurface
    Zhao, Airong
    Zhang, Yanzeng
    Liu, Mingze
    Huo, Pengcheng
    Lu, Yanqing
    Xu, Ting
    LASER & PHOTONICS REVIEWS, 2024, 18 (07)
  • [19] Visualizing orbital angular momentum of plasmonic vortices
    Shen, Z.
    Hu, Z. J.
    Yuan, G. H.
    Min, C. J.
    Fang, H.
    Yuan, X-C.
    OPTICS LETTERS, 2012, 37 (22) : 4627 - 4629
  • [20] Polarization-controlled generation and superposition of surface plasmon polariton vortices with a plasmonic metasurface
    Jiang, Qiao
    Xiang, Hong
    Han, Dezhuan
    APPLIED PHYSICS LETTERS, 2021, 119 (21)