Aluminum in 4H-SiC above 10 MeV

被引:0
作者
Belanche, Manuel [1 ,2 ]
Yonezawa, Yoshiyuki
Heller, Rene [3 ]
Mueller, Arnold [4 ]
Vockenhuber, Christof [4 ]
Martinella, Corinna [1 ]
Rueb, Michael [5 ]
Kato, Masashi [6 ]
Murata, Koichi [7 ]
Tsuchida, Hidekazu [7 ]
Nakayama, Koji [2 ]
Grossner, Ulrike [1 ]
机构
[1] Swiss Fed Inst Technol, Adv Power Semicond Lab, Physikstr 3, CH-8092 Zurich, Switzerland
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058569, Japan
[3] Inst Ion Beam Phys & Mat Res, Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[4] Swiss Fed Inst Technol, Lab Ion Beam Phys, Otto Stern Weg 5, CH-8093 Zurich, Switzerland
[5] Mi2 Factory GmbH, D-07745 Jena, Germany
[6] Nagoya Inst Technol, Nagoya 4668555, Japan
[7] Cent Res Inst Elect Power Ind, Yokosuka, Kanagawa 2400196, Japan
基金
欧盟地平线“2020”;
关键词
Silicon carbide; Power devices; Superjunction; Ion implantation in SiC; High-energy ion implantation; Ion channeling; Aluminum implantation; ION-IMPLANTATION;
D O I
10.1016/j.mssp.2024.108461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study explores high-energy aluminum (Al) implantation above 10 MeV as a fabrication process to facilitate the creation of deep doping regions in silicon carbide (SiC). Experimental investigations were conducted to evaluate the technical feasibility of ultra -high energy implantation and high-energy channeling implantation of aluminum into 4H-SiC. Ultra-high-energy Al implantations at 30 and 48 MeV were performed, revealing limitations such as increased charge dispersion and decreased current near accelerator technical limits. In contrast, high-energy channeling implantations at 12, 15, and 20 MeV demonstrated successful Al channeling implantations into 4H-SiC, emphasizing the importance of precision in crystal orientation and mounting systems. Results indicate that channeling implantations, with precise instrumentation, are a preferred approach over non-channeled ultra-high-energy methods for fabricating deep doping regions in SiC, holding promise for advancing the next generation of high-voltage SiC devices.
引用
收藏
页数:8
相关论文
共 56 条
[1]   EQUILIBRIUM CHARGE STATE DISTRIBUTIONS OF OXYGEN AND SULFUR IONS IN CARBON STRIPPER OF A TANDEM ACCELERATOR [J].
AMBROS, R ;
KLEINFELD, AM .
NUCLEAR INSTRUMENTS & METHODS, 1972, 99 (02) :173-+
[2]  
Baba M, 2021, PROC INT SYMP POWER, P83, DOI 10.23919/ISPSD50666.2021.9452273
[3]   CHARACTERISTICS OF TYPICAL ACCELERATORS [J].
BLEWETT, MH .
ANNUAL REVIEW OF NUCLEAR SCIENCE, 1967, 17 :427-&
[4]   Dopant activation and surface morphology of ion implanted 4H and 6H silicon carbide [J].
Capano, MA ;
Ryu, S ;
Melloch, MR ;
Cooper, JA ;
Buss, MR .
JOURNAL OF ELECTRONIC MATERIALS, 1998, 27 (04) :370-376
[5]  
Chu W.-K., 2012, Backscattering Spectrometry
[6]   SiC power-switching devices - The second electronics revolution? [J].
Cooper, JA ;
Agarwal, A .
PROCEEDINGS OF THE IEEE, 2002, 90 (06) :956-968
[7]   Diffusion of Transition Metals in 4H-SiC and Trials of Impurity Gettering [J].
Danno, Katsunori ;
Saitoh, Hiroaki ;
Seki, Akinori ;
Shirai, Takayuki ;
Suzuki, Hiroshi ;
Bessho, Takeshi ;
Kawai, Yoichiro ;
Kimoto, Tsunenobu .
APPLIED PHYSICS EXPRESS, 2012, 5 (03)
[8]   RANGE MEASUREMENTS IN ORIENTED TUNGSTEN SINGLE CRYSTALS (0.1-1.0 MEV) .2. A DETAILED STUDY OF CHANNELING OF K42 IONS [J].
ERIKSSON, L .
PHYSICAL REVIEW, 1967, 161 (02) :235-&
[9]  
Friedrichs P., 2011, SILICON CARBIDE, V2
[10]   Theory of semiconductor superjunction devices [J].
Fujihira, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (10) :6254-6262