Modelling of room temperature outgassing and diffusion in a martensitic advanced high-strength steel

被引:0
作者
Belardini, Carlo Maria [1 ]
Macoretta, Giuseppe [1 ]
Monelli, Bernardo Disma [1 ]
Berto, Filippo [2 ]
Tedesco, Michele Maria [3 ]
Valentini, Renzo [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Civile & Industriale, I-56122 Pisa, PI, Italy
[2] Sapienza Univ Rome, Dept Chem Engn Mat & Environm, Via Eudossiana 18, I-00184 Rome, RO, Italy
[3] Ctr Ric Fiat ScpA CRF Stellantis, TO, Corso Settembrini 40, I-10135 Turin, TO, Italy
关键词
Mechanical engineering; Car unibody; Advanced high-strength steel; Mathematical modelling with experimental validation; Hydrogen embrittlement; DELAYED-FRACTURE SUSCEPTIBILITY; HYDROGEN EMBRITTLEMENT; PERMEATION; TRANSPORT; BEHAVIOR; SOLUBILITY; SIMULATION;
D O I
10.1016/j.engfailanal.2024.108395
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hydrogen embrittlement (HE) is among the limiting factors for the employment of advanced high -strength steels in the automotive industry. One of the most relevant manifestations of HE for those components is delayed fracture. To perform HE risk assessment against delayed fracture in structural components wherein hydrogen accumulates near notches or bends after manufacturing or assembly, continuum models can be used to predict hydrogen diffusion and accumulation. To this aim, it is crucial to identify both the correct model parameters and boundary conditions (BCs). This study provides the required modelling and experimental framework to estimate the constitutive diffusion, trapping and outgassing parameters for a commercial martensitic advanced high -strength steel grade 1300. Permeation testing and simple room outgassing tests showed that a natural BC with one -parameter effectively reproduces the experimental results. The proposed model can be used to predict a reasonable hydrogen distribution, both inside of the component and near to the surface, which is valuable for HE risk assessments. Finally, the same BC can be employed with the interpretation of ex -situ hydrogen charged tensile tests.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Proposal of a hydrogen embrittlement index for a martensitic advanced high-strength steel
    Aiello, Francesco
    Beghini, Marco
    Belardini, Carlo Maria
    Bertini, Leonardo
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Valentini, Renzo
    CORROSION SCIENCE, 2023, 222
  • [2] Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel
    Venezuela, Jeffrey
    Lim, Fang Yan
    Liu, Li
    James, Sonia
    Zhou, Qingjun
    Knibbe, Ruth
    Zhang, Mingxing
    Li, Huixing
    Dong, Futao
    Dargusch, Matthew S.
    Atrens, Andrej
    CORROSION SCIENCE, 2020, 171
  • [3] A review of hydrogen embrittlement of martensitic advanced high-strength steels
    Venezuela, Jeffrey
    Liu, Qinglong
    Zhang, Mingxing
    Zhou, Qingjun
    Atrens, Andrej
    CORROSION REVIEWS, 2016, 34 (03) : 153 - 186
  • [4] Temperature effect on hydrogen embrittlement susceptibility of a high strength martensitic steel
    Martiniano, Guilherme Antonelli
    Bose Filho, Waldek Wladimir
    Garcia, Regina Paula
    Franco, Sinesio Domingues
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 110 : 457 - 469
  • [5] Effect of Stretch-forming on Hydrogen Diffusion Behavior in High-strength Steel Sheet
    Nishimura, Hayato
    Ajito, Saya
    Hojo, Tomohiko
    Koyama, Motomichi
    Fujita, Ken-ichi
    Shibayama, Yuki
    Kakinuma, Hiroshi
    Akiyama, Eiji
    ISIJ INTERNATIONAL, 2024, 64 (04) : 637 - 644
  • [6] Effect of Stretch-forming on Hydrogen Diffusion Behavior in High-strength Steel Sheet
    Nishimura, Hayato
    Ajito, Saya
    Hojo, Tomohiko
    Koyama, Motomichi
    Fujita, Ken-ichi
    Shibayama, Yuki
    Kakinuma, Hiroshi
    Akiyama, Eiji
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2022, 108 (05): : 316 - 324
  • [7] Effect of shearing prestrain on the hydrogen embrittlement of 1180 MPa grade martensitic advanced high-strength steel
    Li, Huixing
    Venezuela, Jeffrey
    Zhou, Qingjun
    Shi, Zhiming
    Yan, Ming
    Knibbe, Ruth
    Zhang, Mingxing
    Dong, Futao
    Atrens, Andrej
    CORROSION SCIENCE, 2022, 199
  • [8] Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions
    Venezuela, Jeffrey
    Blanch, Jethro
    Zulkiply, Azmir
    Liu, Qinglong
    Zhou, Qingjun
    Zhang, Mingxing
    Atrens, Andrej
    CORROSION SCIENCE, 2018, 135 : 120 - 135
  • [9] Hydrogen-induced fast fracture in notched 1500 and 1700 MPa class automotive martensitic advanced high-strength steel
    Venezuela, Jeffrey
    Hill, Timothy
    Zhou, Qingjun
    Li, Huixing
    Shi, Zhiming
    Dong, Futao
    Knibbe, Ruth
    Zhang, Mingxing
    Dargusch, Matthew S.
    Atrens, Andrej
    CORROSION SCIENCE, 2021, 188
  • [10] Hydrogen Trapping in Some Automotive Martensitic Advanced High-Strength Steels
    Venezuela, Jeffrey
    Zhou, Qingjun
    Liu, Qinglong
    Zhang, Mingxing
    Atrens, Andrej
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (01)