Constrained Spectral-Spatial Attention Residual Network and New Cross-Scene Dataset for Hyperspectral Classification

被引:0
|
作者
Li, Siyuan [1 ,2 ,3 ]
Chen, Baocheng [1 ,3 ]
Wang, Nan [4 ]
Shi, Yuetian [1 ,3 ]
Zhang, Geng [1 ]
Liu, Jia [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Phys, Xian 710054, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Hainan Normal Univ, Sch Informat Sci & Technol, Haikou 571158, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; hyperspectral image classification; cross-scene; benchmark dataset; constrained spectral-spatial attention; IMAGE CLASSIFICATION; FEATURE ADAPTATION; REPRESENTATION;
D O I
10.3390/electronics13132540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image classification is widely applied in several fields. Since existing datasets focus on a single scene, current deep learning-based methods typically divide patches randomly on the same image as training and testing samples. This can result in similar spatial distributions of samples, which may incline the network to learn specific spatial distributions in pursuit of falsely high accuracy. In addition, the large variation between single-scene datasets has led to research in cross-scene hyperspectral classification, focusing on domain adaptation and domain generalization while neglecting the exploration of the generalizability of models to specific variables. This paper proposes two approaches to address these issues. The first approach is to train the model on the original image and then test it on the rotated dataset to simulate cross-scene evaluation. The second approach is constructing a new cross-scene dataset for spatial distribution variations, named GF14-C17&C16, to avoid the problems arising from the existing single-scene datasets. The image conditions in this dataset are basically the same, and only the land cover distribution is different. In response to the spatial distribution variations, this paper proposes a constrained spectral attention mechanism and a constrained spatial attention mechanism to limit the fitting of the model to specific feature distributions. Based on these, this paper also constructs a constrained spectral-spatial attention residual network (CSSARN). Extensive experimental results on two public hyperspectral datasets and the GF14-C17&C16 dataset have demonstrated that CSSARN is more effective than other methods in extracting cross-scene spectral and spatial features.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Spectral-Spatial Adversarial Multidomain Synthesis Network for Cross-Scene Hyperspectral Image Classification
    Chen, Xi
    Gao, Lin
    Zhang, Maojun
    Chen, Chen
    Yan, Shen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [2] Spectral-Spatial Enhancement and Causal Constraint for Hyperspectral Image Cross-Scene Classification
    Dong, Lijia
    Geng, Jie
    Jiang, Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [3] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [4] HyperEDL: Spectral-Spatial Evidence Deep Learning for Cross-Scene Hyperspectral Image Classification
    Feng, Yangbo
    Yi, Xin
    Wang, Shuhe
    Yue, Jun
    Xia, Shaobo
    Fang, Leyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] Enhanced Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Zhan, Yanting
    Wu, Ke
    Dong, Yanni
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7171 - 7186
  • [6] Lightweight Spectral-Spatial Feature Extraction Network Based on Domain Generalization for Cross-Scene Hyperspectral Image Classification
    Cui, Ying
    Zhu, Longyu
    Zhao, Chunhui
    Wang, Liguo
    Gao, Shan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [7] A Deep Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15393 - 15406
  • [8] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [9] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Cross-Attention Spectral-Spatial Network for Hyperspectral Image Classification
    Yang, Kai
    Sun, Hao
    Zou, Chunbo
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60