Hydrothermal synthesis of LiMn 0.79 Fe 0.2 Mg 0.01 PO 4 /C composite cathode materials using different Li 3 PO 4 precursors

被引:9
作者
Deng, Qinwen [1 ]
Li, Teng [1 ]
Wang, Jun [2 ]
Zhang, Shu [1 ]
Yang, Hongcheng [3 ]
Xu, Caili [1 ]
Wu, Mengqiang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Sichuan, Peoples R China
[2] Sichuan Water Conservancy Vocat Coll, Dept Resources & Environm Engn, Chengdu 611231, Peoples R China
[3] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
关键词
LiMn0.79Fe0.2Mg0.01PO4/C; Lithium phosphate; Lithium-ion battery; Cathode material; Specific surface area; ENHANCED ELECTROCHEMICAL PERFORMANCE; PHOSPHO-OLIVINES; LITHIUM;
D O I
10.1016/j.ceramint.2024.01.284
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Doping and particle size controlling are two important approaches to improve the electrochemical performance of LiMn x Fe 1_x PO 4 cathode materials. By employing a straightforward hydrothermal method and utilizing costeffective lithium phosphate (Li 3 PO 4 ) as the precursor, we successfully synthesized high Mn-content LiMn 0.79- Fe 0.2 Mg 0.01 PO 4 /C composites. The results reveal that the minute amount of Mg substantially enhances the electrochemical performance. In the subsequent mechanism study using Li 3 PO 4 precursors with different particle size, we found that the nucleation process, dependent on specific surface area and diffusion rate, is likely to play a critical role for the size and morphology of formed LiMn 0.79 Fe 0.2 Mg 0.01 PO 4 . LiMn 0.79 Fe 0.2 Mg 0.01 PO 4 /C (LMFP1), synthesized from initially smaller-sized and less agglomerated Li 3 PO 4 (LPO-1), exhibited the most diminutive average particle size coupled with the highest specific surface area, which further facilitated electrolyte interfacial interaction and promoted Li + diffusion kinetics. At 1C, LMFP-1 displayed a specific capacity of 110.7 mAh g _ 1 high -performance LiMn x Fe 1_x PO 4 materials. , with 97.07% capacity retention after 200 cycles. This study provides pivotal insights for the synthesis of high-performance LiMn x Fe 1_x PO 4 materials.
引用
收藏
页码:13702 / 13710
页数:9
相关论文
共 44 条
[1]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[2]   Construction of Carbon-Coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 Nanorod Composites for High-Performance Li-Ion Batteries [J].
Chang, Hui ;
Li, Ying ;
Fang, Zi-Kui ;
Qu, Jin-Peng ;
Zhu, Yan-Rong ;
Yi, Ting-Feng .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) :33102-33111
[3]   Insight into structural and electrochemical properties of Mg-doped LiMnPO4/C cathode materials with first-principles calculation and experimental verification [J].
Chang, Longjiao ;
Bi, Xiaolong ;
Luo, Shaohua ;
Cao, Shiyuan ;
Wei, Anlu ;
Yang, Wei ;
Liu, Jianan ;
Zhang, Fusheng .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (15) :20715-20728
[4]   Hydrothermal synthesis and electrochemical performance of multicomponent LiMn0.8Fe0.19Mg0.01PO4 [J].
Chu, Xu ;
Li, Lingmeng ;
Chen, Wei ;
Fang, Haisheng .
IONICS, 2021, 27 (07) :2927-2935
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Morphology regulation of nano LiMn0.9Fe0.1PO4 by solvothermal synthesis for lithium ion batteries [J].
Dai, Zhongjia ;
Wang, Li ;
He, Xiangming ;
Ye, Feipeng ;
Huang, Chaochao ;
Li, Jianjun ;
Gao, Jian ;
Wang, Jianlong ;
Tian, Guangyu ;
Ouyang, Minggao .
ELECTROCHIMICA ACTA, 2013, 112 :144-148
[7]   Recent Advances of Mn-Rich LiFe1-yMnyPO4 (0.5=y < 1.0) Cathode Materials for High Energy Density Lithium Ion Batteries [J].
Deng, Yuanfu ;
Yang, Chunxiang ;
Zou, Kaixiang ;
Qin, Xusong ;
Zhao, Zhenxia ;
Chen, Guohua .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)
[8]   Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings [J].
Dong, Youzhong ;
Zhao, Yanming ;
Duan, He ;
Liang, Zhiyong .
ELECTROCHIMICA ACTA, 2014, 132 :244-250
[9]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[10]   LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries [J].
Fang, Haisheng ;
Dai, Enrui ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui .
JOURNAL OF POWER SOURCES, 2012, 204 :193-196