Delay-Dependent Stability Evaluation for Temperature Control Load Participating in Load Frequency Control of Microgrid

被引:7
作者
Wei, Chen-Guang [1 ,2 ,3 ]
Shangguan, Xing-Chen [1 ,2 ,3 ]
He, Yong [1 ,2 ,3 ]
Zhang, Chuan-Ke [1 ,2 ,3 ]
Xu, Da [1 ,2 ,3 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat Co, Wuhan 430074, Peoples R China
[3] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Load frequency control (LFC); microgrid (MG); temperature control load (TCL); time delay; DEMAND-RESPONSE; TIME; SYSTEMS;
D O I
10.1109/TIE.2024.3404126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temperature control load (TCL) usually participates in load frequency control of microgrid (MGLFC) through open communication network, which inevitably introduces time delays. Time delays will degrade the performance of MG and even lead to instability. In this article, the delay-dependent stability for MGLFC with TCL participation is evaluated. First, a model of TCL participating in MGLFC is constructed with time delay induced by open communication network and transformed into a time-delay system. Then, the delay-dependent stability for MGLFC with TCL participation is evaluated by the Lyapunov stability theory. The stability evaluation criterion obtained is less conservative and can provide a larger stability margin of time-varying delay for MGLFC with TCL participation. Finally, the effectiveness of the model and the advantages of the proposed method are verified by numerical calculation, simulation tests, and experiments. The results indicate that, compared with the existing methods, the proposed criterion can obtain a larger delay margin without increasing the computational complexity under the same controller gains. In addition, with the participation of TCL, MGLFC performs a larger time-delay tolerance and can well resist the negative effects of time delays.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 31 条
[1]  
Bevrani H, 2014, POWER ELECTRON POWER, P1, DOI 10.1007/978-3-319-07278-4
[2]   Demand-response in building heating systems: A Model Predictive Control approach [J].
Bianchini, Gianni ;
Casini, Marco ;
Vicino, Antonio ;
Zarrilli, Donato .
APPLIED ENERGY, 2016, 168 :159-170
[3]   Robust Optimal Control for Demand Side Management of Multi-Carrier Microgrids [J].
Carli, Raffaele ;
Cavone, Graziana ;
Pippia, Tomas ;
De Schutter, Bart ;
Dotoli, Mariagrazia .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) :1338-1351
[4]  
Ding Y., 2019, INTEGRATION AIR COND, P83
[5]   Microgrid Stability Definitions, Analysis, and Examples [J].
Farrokhabadi, Mostafa ;
Lagos, Dimitris ;
Wies, Richard W. ;
Paolone, Mario ;
Liserre, Marco ;
Meegahapola, Lasantha ;
Kabalan, Mahmoud ;
Hajimiragha, Amir H. ;
Peralta, Dario ;
Elizondo, Marcelo A. ;
Schneider, Kevin P. ;
Canizares, Claudio A. ;
Tuffner, Francis K. ;
Reilly, Jim ;
Simpson-Porco, John W. ;
Nasr, Ehsan ;
Fan, Lingling ;
Mendoza-Araya, Patricio A. ;
Tonkoski, Reinaldo ;
Tamrakar, Ujjwol ;
Hatziargyriou, Nikos .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) :13-29
[6]   Distributed Energy Trading: The Multiple-Microgrid Case [J].
Gregoratti, David ;
Matamoros, Javier .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (04) :2551-2559
[7]   A quadratic convex framework with bigger freedom for the stability analysis of a cyber-physical microgrid system [J].
He, Jing ;
Liang, Yan ;
Hao, Xiaohui ;
Yang, Feisheng ;
Pan, Quan .
SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (02)
[8]   Stability analysis of micro-grid frequency control system with two additive time-varying delay [J].
Hua, Changchun ;
Wang, Yibo ;
Wu, Shuangshuang .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (08) :4949-4963
[9]  
HUI H, 2018, 2018 IEEE POW EN SOC, P1, DOI DOI 10.1109/PESGM.2018.8586352
[10]   Dynamic and Stability Analysis of the Power System With the Control Loop of Inverter Air Conditioners [J].
Hui, Hongxun ;
Ding, Yi ;
Chen, Tao ;
Rahman, Saifur ;
Song, Yonghua .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) :2725-2736