Channel reflection: Knowledge-driven data augmentation for EEG-based brain-computer interfaces

被引:4
作者
Wang, Ziwei [1 ,2 ]
Li, Siyang [1 ,2 ]
Luo, Jingwei [3 ]
Liu, Jiajing [4 ]
Wu, Dongrui [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Minist Educ Image Proc & Intelligent Contr, Wuhan 430074, Peoples R China
[2] Shenzhen Huazhong Univ Sci & Technol, Res Inst, Shenzhen 518063, Peoples R China
[3] China Elect Syst Technol Co Ltd, Beijing 100089, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, Wuhan 430074, Peoples R China
关键词
Brain-computer interface; Electroencephalogram; Informed machine learning; Integration of data and knowledge; Data augmentation; FEATURE-EXTRACTION; MOTOR IMAGERY;
D O I
10.1016/j.neunet.2024.106351
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain-computer interface (BCI) enables direct communication between the human brain and external devices. Electroencephalography (EEG) based BCIs are currently the most popular for able-bodied users. To increase user-friendliness, usually a small amount of user-specific EEG data are used for calibration, which may not be enough to develop a pure data -driven decoding model. To cope with this typical calibration data shortage challenge in EEG-based BCIs, this paper proposes a parameter -free channel reflection (CR) data augmentation approach that incorporates prior knowledge on the channel distributions of different BCI paradigms in data augmentation. Experiments on eight public EEG datasets across four different BCI paradigms (motor imagery, steady -state visual evoked potential, P300, and seizure classifications) using different decoding algorithms demonstrated that: (1) CR is effective, i.e., it can noticeably improve the classification accuracy; (2) CR is robust, i.e., it consistently outperforms existing data augmentation approaches in the literature; and, (3) CR is flexible, i.e., it can be combined with other data augmentation approaches to further improve the performance. We suggest that data augmentation approaches like CR should be an essential step in EEG-based BCIs. Our code is available online.
引用
收藏
页数:13
相关论文
共 54 条
  • [1] A comprehensive review of EEG-based brain-computer interface paradigms
    Abiri, Reza
    Borhani, Soheil
    Sellers, Eric W.
    Jiang, Yang
    Zhao, Xiaopeng
    [J]. JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
  • [2] Automated EEG analysis of epilepsy: A review
    Acharya, U. Rajendra
    Sree, S. Vinitha
    Swapna, G.
    Martis, Roshan Joy
    Suri, Jasjit S.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 45 : 147 - 165
  • [3] [Anonymous], 1949, European Archives of Psychiatry and Clinical Neuroscience, DOI [10.1007/BF01062488, DOI 10.1007/BF01062488]
  • [4] Influence of P300 latency jitter on event related potential-based brain-computer interface performance
    Arico, P.
    Aloise, F.
    Schettini, F.
    Salinari, S.
    Mattia, D.
    Cincotti, F.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2014, 11 (03)
  • [5] Optimizing spatial filters for robust EEG single-trial analysis
    Blankertz, Benjamin
    Tomioka, Ryota
    Lemm, Steven
    Kawanabe, Motoaki
    Mueller, Klaus-Robert
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 41 - 56
  • [6] The non-invasive Berlin Brain-Computer Interface:: Fast acquisition of effective performance in untrained subjects
    Blankertz, Benjamin
    Dornhege, Guido
    Krauledat, Matthias
    Mueller, Klaus-Robert
    Curio, Gabriel
    [J]. NEUROIMAGE, 2007, 37 (02) : 539 - 550
  • [7] A review of feature extraction and performance evaluation in epileptic seizure detection using EEG
    Boonyakitanont, Poomipat
    Lek-uthai, Apiwat
    Chomtho, Krisnachai
    Songsiri, Jitkomut
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
  • [8] Deiss O, 2018, Arxiv, DOI arXiv:1803.09702
  • [9] Freeman WalterJ., 2007, SCHOLARPEDIA, V2
  • [10] Data augmentation for self-paced motor imagery classification with C-LSTM
    Freer, Daniel
    Yang, Guang-Zhong
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)