Kinetics of low temperature plasma assisted NH3/H2 oxidation in a nanosecond-pulsed discharge

被引:0
|
作者
Liu, Ning [1 ]
Mei, Bowen [1 ]
Mao, Xingqian [1 ]
Wang, Ziyu [1 ]
Sun, Zijian [1 ]
Xu, Yijie [1 ]
Shi, Zhiyu [1 ]
Ju, Yiguang [1 ,2 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
Plasma assisted combustion; Non -equilibrium plasma; Ammonia; Hydrogen; N 2 O/NO x formation; HYBRID REPETITIVE NANOSECOND; AMMONIA; MECHANISM;
D O I
10.1016/j.proci.2024.105353
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia (NH 3 ) has been widely recognized as one of the carbon -neutral fuels. However, ammonia combustion suffers low reactivity and high N 2 O/NO x emissions. To overcome these issues, this work reports plasma assisted NH 3 /H 2 oxidation and unveils the kinetics of fuel oxidation and N 2 O/NO x formation by combining time -resolved laser diagnostics with plasma modeling. Firstly, we found that the NH 3 consumption is promoted with a H 2 blending ratio of 0.3, due to enhancements of H and OH formation by plasma assisted H 2 dissociation. Secondly, at a high reduced electric field, when the H 2 blending ratio increases, the NH 3 oxidation is promoted due to both the HO 2 formation and strong NO kinetic enhancement via NO-HO 2 and NO 2 -H pathways. In the meantime, it is shown that the NO mole fraction also increases with H 2 blending ratio, because the NO formation is enhanced via N( 2 D)-O 2 pathways, and the DeNO x chemistry is weakened with less NH 2 production. By contrast, at a lower reduced electric field, when the H 2 blending ratio increases, the decreased N( 2 D) formation does not produce enough NO to replenish the NO formation drop caused by lower NH 3 concentration. Thirdly, the reduced electric field non -monotonically affects fuel consumption and N 2 O/NO x formation by manipulating electron energy deposition pathways. The NH 3 consumption is maximized with an optimal reduced electric field where N 2 * excitation and O 2 dissociation are most efficient. When the reduced electric field deviates from its optimum, the NH 3 consumption decreases due to the discharge energy deposition to either vibrational excitation or dissociation of N 2 . The N 2 O/NO x emissions governed by the NH 3 oxidation follow the above NH 3 consumption trend.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H2, NH3, and an Isonitrile
    Su, Yuanting
    Li, Yongxin
    Ganguly, Rakesh
    Kinjo, Rei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (26) : 7846 - 7849
  • [42] Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures
    Wang, Shixing
    Wang, Zhihua
    Elbaz, Ayman M.
    Han, Xinlu
    He, Yong
    Costa, Mario
    Konnov, Alexander A.
    Roberts, William L.
    COMBUSTION AND FLAME, 2020, 221 : 270 - 287
  • [43] Numerical simulation of the effects of NH3 and H2 on the combustion characteristics of laminar premixed ethylene/air flames
    Yao, Jinfang
    Dong, Wenlong
    Yang, Yuhang
    Wang, Dongyang
    Chu, Huaqiang
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2025,
  • [44] Combustion of NH3/CH4/Air and NH3/H2/Air Mixtures in a Porous Burner: Experiments and Kinetic Modeling
    Rocha, Rodolfo C.
    Ramos, C. Filipe
    Costa, Mario
    Bai, Xue-Song
    ENERGY & FUELS, 2019, 33 (12) : 12767 - 12780
  • [45] Formation and consumption of NO in H2 + O2 + N2 flames doped with NO or NH3 at atmospheric pressure
    Shmakov, A. G.
    Korobeinichev, O. P.
    Rybitskaya, I. V.
    Chernov, A. A.
    Knyazkov, D. A.
    Bolshova, T. A.
    Konnov, A. A.
    COMBUSTION AND FLAME, 2010, 157 (03) : 556 - 565
  • [46] Studies on the Effects of NH3 in H2 and Air on the Performance of PEMFC
    Hu, Kefeng
    Yang, Daijun
    ENERGIES, 2021, 14 (20)
  • [47] Kinetics of the NH3 and CO2 solid-state reaction at low temperature
    Noble, J. A.
    Theule, P.
    Duvernay, F.
    Danger, G.
    Chiavassa, T.
    Ghesquiere, P.
    Mineva, T.
    Talbi, D.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (43) : 23604 - 23615
  • [48] Uniqueness and similarity in flame propagation of pre-dissociated NH3 + air and NH3 + H2 + air mixtures: An experimental and modelling study
    Han, Xinlu
    Wang, Zhihua
    He, Yong
    Zhu, Yanqun
    Lin, Riyi
    Konnov, Alexander A.
    FUEL, 2022, 327
  • [49] Experimental study on burning velocity, structure, and NOx emission of premixed laminar and swirl NH3/H2/air flames assisted by non-thermal plasma
    Ju, Rongyuan
    Wang, Jinhua
    Zhang, Meng
    Mu, Haibao
    Wu, Yun
    Zhang, Guanjun
    Huang, Zuohua
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2023, 14
  • [50] INFLUENCE OF THE CONCENTRATION OF H2 ON THE STRUCTURE OF A NANOSECOND DISCHARGE IN DIFFERENT H2/AIR MIXTURES AT ATMOSPHERIC PRESSURE FOR PLASMA ASSISTED COMBUSTION APPLICATIONS
    Kobayashi, S.
    Bonaventura, Z.
    Tholin, F.
    Popov, N.
    Bourdon, A.
    HAKONE XV: INTERNATIONAL SYMPOSIUM ON HIGH PRESSURE LOW TEMPERATURE PLASMA CHEMISTRY: WITH JOINT COST TD1208 WORKSHOP: NON-EQUILIBRIUM PLASMAS WITH LIQUIDS FOR WATER AND SURFACE TREATMENT, 2016, : 58 - 62