EEG Data Analysis Techniques for Precision Removal and Enhanced Alzheimer's Diagnosis: Focusing on Fuzzy and Intuitionistic Fuzzy Logic Techniques

被引:2
作者
Versaci, Mario [1 ]
La Foresta, Fabio [1 ]
机构
[1] Mediterranea Univ, DICEAM Dept, Via Zehender, I-89122 Reggio Di Calabria, Italy
关键词
fuzzy logic techniques; intuitionistic fuzzy systems; neurodegenerative disease diagnosis; AI integration in EEG analysis; clinical EEG applications; BLIND SOURCE SEPARATION; NEURAL-NETWORK; COMPONENT ANALYSIS; ARTIFACT REMOVAL; DISEASE PATIENTS; ELECTROENCEPHALOGRAM; SIGNALS; CLASSIFICATION; EXTRACTION; PREDICTION;
D O I
10.3390/signals5020018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective management of EEG artifacts is pivotal for accurate neurological diagnostics, particularly in detecting early stages of Alzheimer's disease. This review delves into the cutting-edge domain of fuzzy logic techniques, emphasizing intuitionistic fuzzy systems, which offer refined handling of uncertainties inherent in EEG data. These methods not only enhance artifact identification and removal but also integrate seamlessly with other AI technologies to push the boundaries of EEG analysis. By exploring a range of approaches from standard protocols to advanced machine learning models, this paper provides a comprehensive overview of current strategies and emerging technologies in EEG artifact management. Notably, the fusion of fuzzy logic with neural network models illustrates significant advancements in distinguishing between genuine neurological activity and noise. This synthesis of technologies not only improves diagnostic accuracy but also enriches the toolset available to researchers and clinicians alike, facilitating earlier and more precise identification of neurodegenerative diseases. The review ultimately underscores the transformative potential of integrating diverse computational techniques, setting a new standard in EEG analysis and paving the way for future innovations in medical diagnostics.
引用
收藏
页码:343 / 381
页数:39
相关论文
共 153 条
[1]   Analyzing of optimal classifier selection for EEG signals of depression patients based on intelligent fuzzy decision support systems [J].
Abdullah, Saleem ;
Abosuliman, Shougi S. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature [J].
Acharya J.N., M.D. ;
Hani A.J., M.D. ;
Cheek J., R. EEG T., CNIM ;
Thirumala P., M.D., FACNS ;
Tsuchida T.N., M.D., Ph.D., FACNS .
Neurodiagnostic Journal, 2016, 56 (04) :245-252
[3]   Characterization of focal EEG signals: A review [J].
Acharya, U. Rajendra ;
Hagiwara, Yuki ;
Deshpande, Sunny Nitin ;
Suren, S. ;
Koh, Joel En Wei ;
Oh, Shu Lih ;
Arunkumar, N. ;
Ciaccio, Edward J. ;
Lim, Choo Min .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 91 :290-299
[4]   Transfer Learning for Alzheimer's Disease through Neuroimaging Biomarkers: A Systematic Review [J].
Agarwal, Deevyankar ;
Marques, Goncalo ;
de la Torre-Diez, Isabel ;
Franco Martin, Manuel A. ;
Garcia Zapirain, Begona ;
Martin Rodriguez, Francisco .
SENSORS, 2021, 21 (21)
[5]   New diagnostic EEG markers of the Alzheimer's disease using visibility graph [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Anahita .
JOURNAL OF NEURAL TRANSMISSION, 2010, 117 (09) :1099-1109
[6]  
Ahmed M.A., 2022, Math. Stat. Eng. Appl, V71, P1221
[7]   On the path to 2025: understanding the Alzheimer's disease continuum [J].
Aisen, Paul S. ;
Cummings, Jeffrey ;
Jack, Clifford R., Jr. ;
Morris, John C. ;
Sperling, Reisa ;
Froelich, Lutz ;
Jones, Roy W. ;
Dowsett, Sherie A. ;
Matthews, Brandy R. ;
Raskin, Joel ;
Scheltens, Philip ;
Dubois, Bruno .
ALZHEIMERS RESEARCH & THERAPY, 2017, 9
[8]  
Akuthota S., 2024, Computational Intelligence and Deep Learning Methods for Neuro-rehabilitation Applications, P195
[9]   Complexity Analysis of EEG in Patients With Social Anxiety Disorder Using Fuzzy Entropy and Machine Learning Techniques [J].
Al-Ezzi, Abdulhakim ;
Al-Shargabi, Amal A. ;
Al-Shargie, Fares ;
Zahary, Ammar T. .
IEEE ACCESS, 2022, 10 :39926-39938
[10]  
Al-Qazzaz NK, 2017, IEEE ENG MED BIO, P3174, DOI 10.1109/EMBC.2017.8037531