Joint assimilation of satellite-based surface soil moisture and vegetation conditions into the Noah-MP land surface model

被引:3
作者
Heyvaert, Zdenko [1 ,2 ]
Scherrer, Samuel [1 ,2 ]
Dorigo, Wouter [2 ]
Bechtold, Michel [1 ]
De Lannoy, Gabrielle [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Heverlee, Belgium
[2] TU Wien, Dept Geodesy & Geoinformat, Vienna, Austria
来源
SCIENCE OF REMOTE SENSING | 2024年 / 9卷
关键词
Soil moisture; Vegetation; Multi -sensor data assimilation; Multivariate data assimilation; LEAF-AREA INDEX; OPTICAL DEPTH; MICROWAVE EMISSION; CARBON FLUXES; LDAS-MONDE; RETRIEVALS; WATER; TEMPERATURE; VALIDATION; SENTINEL-1;
D O I
10.1016/j.srs.2024.100129
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study explores the potential of integrating satellite retrievals of surface soil moisture (SSM) and vegetation conditions into the Noah-MP land surface model. In total, five data assimilation (DA) experiments were carried out. One of the experiments only assimilates SSM retrievals from the Soil Moisture Active Passive mission, two experiments only assimilate retrievals of vegetation conditions: either optical retrievals of leaf area index (LAI) from the Copernicus Global Land Service, or X-band microwave-based retrievals of vegetation optical depth (VOD) from the Advanced Microwave Scanning Radiometer 2. Additionally, two joint DA experiments are performed, each incorporating SSM and one of the vegetation products. The DA experiments are compared with a model-only run, and all experiments are evaluated using independent ground reference data of soil moisture, evapotranspiration, net ecosystem exchange and gross primary production (GPP). Assimilating only SSM improves estimates of the soil moisture profile (median SSM anomaly correlation improves with 0.02 compared to a model-only run), whereas assimilating LAI predominantly improves GPP estimates (reduction in median RMSD of 0.024 gC m- 2 day-1 compared to a model-only run). The joint assimilation of SSM and vegetation conditions captures both of these improvements in a single, physically consistent analysis product. The DA increments show that this combined setup allows one satellite product to compensate for potential degradations introduced into the system by the other product. Furthermore, the joint SSM and VOD DA experiment has the smallest ensemble spread in its estimates (21% reduction in SSM spread compared to a model-only run). Overall, our results underline the potential of multi-sensor and multivariate DA, in which information from different sources is combined to improve the estimates of several land surface states and fluxes simultaneously.
引用
收藏
页数:15
相关论文
共 93 条
[1]   Soil moisture estimation in South Asia via assimilation of SMAP retrievals [J].
Ahmad, Jawairia A. ;
Forman, Barton A. ;
Kumar, Sujay, V .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (08) :2221-2243
[2]   Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area [J].
Albergel, Clement ;
Munier, Simon ;
Leroux, Delphine Jennifer ;
Dewaele, Helene ;
Fairbairn, David ;
Barbu, Alina Lavinia ;
Gelati, Emiliano ;
Dorigo, Wouter ;
Faroux, Stephanie ;
Meurey, Catherine ;
Le Moigne, Patrick ;
Decharme, Bertrand ;
Mahfouf, Jean-Francois ;
Calvet, Jean-Christophe .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (10) :3889-3912
[3]   Local ensemble Kalman filtering in the presence of model bias [J].
Baek, SJ ;
Hunt, BR ;
Kalnay, E ;
Ott, E ;
Szunyogh, I .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2006, 58 (03) :293-306
[4]   Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review [J].
Balsamo, Gianpaolo ;
Agusti-Parareda, Anna ;
Albergel, Clement ;
Arduini, Gabriele ;
Beljaars, Anton ;
Bidlot, Jean ;
Bousserez, Nicolas ;
Boussetta, Souhail ;
Brown, Andy ;
Buizza, Roberto ;
Buontempo, Carlo ;
Chevallier, Frederic ;
Choulga, Margarita ;
Cloke, Hannah ;
Cronin, Meghan F. ;
Dahoui, Mohamed ;
De Rosnay, Patricia ;
Dirmeyer, Paul A. ;
Drusch, Matthias ;
Dutra, Emanuel ;
Ek, Michael B. ;
Gentine, Pierre ;
Hewitt, Helene ;
Keeley, Sarah P. E. ;
Kerr, Yann ;
Kumar, Sujay ;
Lupu, Cristina ;
Mahfouf, Jean-Francois ;
McNorton, Joe ;
Mecklenburg, Susanne ;
Mogensen, Kristian ;
Munoz-Sabater, Joaquin ;
Orth, Rene ;
Rabier, Florence ;
Reichle, Rolf ;
Ruston, Ben ;
Pappenberger, Florian ;
Sandu, Irina ;
Seneviratne, Sonia I. ;
Tietsche, Steffen ;
Trigo, Isabel F. ;
Uijlenhoet, Remko ;
Wedi, Nils ;
Woolway, R. Iestyn ;
Zeng, Xubin .
REMOTE SENSING, 2018, 10 (12)
[5]   Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France [J].
Barbu, A. L. ;
Calvet, J. -C. ;
Mahfouf, J. -F. ;
Lafont, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (01) :173-192
[6]  
Bonan G, 2019, CLIMATE CHANGE AND TERRESTRIAL ECOSYSTEM MODELING, P1, DOI 10.1017/9781107339217
[7]  
Bousquet E, 2021, REMOTE SENS ENVIRON, V257, DOI [10.1109/IGARSS47720.2021.9554873, 10.1016/j.rse.2021.112345]
[8]   EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets [J].
Brodzik, Mary J. ;
Billingsley, Brendan ;
Haran, Terry ;
Raup, Bruce ;
Savoie, Matthew H. .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2012, 1 (01) :32-45
[9]   Assessment of the SMAP Passive Soil Moisture Product [J].
Chan, Steven K. ;
Bindlish, Rajat ;
O'Neill, Peggy E. ;
Njoku, Eni ;
Jackson, Tom ;
Colliander, Andreas ;
Chen, Fan ;
Burgin, Mariko ;
Dunbar, Scott ;
Piepmeier, Jeffrey ;
Yueh, Simon ;
Entekhabi, Dara ;
Cosh, Michael H. ;
Caldwell, Todd ;
Walker, Jeffrey ;
Wu, Xiaoling ;
Berg, Aaron ;
Rowlandson, Tracy ;
Pacheco, Anna ;
McNairn, Heather ;
Thibeault, Marc ;
Martinez-Fernandez, Jose ;
Gonzalez-Zamora, Angel ;
Seyfried, Mark ;
Bosch, David ;
Starks, Patrick ;
Goodrich, David ;
Prueger, John ;
Palecki, Michael ;
Small, Eric E. ;
Zreda, Marek ;
Calvet, Jean-Christophe ;
Crow, Wade T. ;
Kerr, Yann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4994-5007
[10]   Systematic Modeling Errors Undermine the Application of Land Data Assimilation Systems for Hydrological and Weather Forecasting [J].
Crow, Wade T. ;
Kim, Hyunglok ;
Kumarb, Sujay .
JOURNAL OF HYDROMETEOROLOGY, 2024, 25 (01) :3-26