Two-stage short-term wind power probabilistic prediction using natural gradient boosting combined with neural network

被引:5
|
作者
Zhang, Siyi [1 ,2 ]
Liu, Mingbo [1 ,2 ]
Xie, Min [1 ,2 ]
Lin, Shunjiang [1 ,2 ]
机构
[1] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Key Lab Clean Energy Technol, Guangzhou 510640, Peoples R China
关键词
Wind power probabilistic prediction; Natural gradient boosting; Neural network; QUANTILE REGRESSION; ENSEMBLE; MODEL;
D O I
10.1016/j.asoc.2024.111669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate wind power probabilistic prediction reflects the uncertainty information of wind power generation, which is the foundation for optimal scheduling of power systems. This study proposes a two-stage probabilistic prediction model combining natural gradient boosting and neural network for accurate uncertainty estimation of short-term output in a wind farm. In the first stage, the selected input features containing historical and future information are fed into a neural network for representation learning. In the second stage, the extracted abstract features are concatenated with the original features, and a natural gradient boosting model is employed to acquire short-term probabilistic forecasts. The experimental results using data from two real wind farms indicate that the proposed hybrid model can generate accurate, sharp, and reliable forecasts. After performing the successive day-ahead prediction task for a month in the first wind farm, the average root mean square error and mean absolute error of the proposed model in the point prediction were 0.1330 and 0.1070, respectively, which were 6.21%-57.29% and 2.96%-62.03% lower than those of comparative models. In addition, the model's forecasting probability density curves demonstrate high reliability; its coverage probability and the mean width percentage of the interval prediction results under the 90% confidence level were 0.9094 and 0.3696, respectively, which were more suitable than those of five other probabilistic prediction models.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting
    Mitrentsis, Georgios
    Lens, Hendrik
    APPLIED ENERGY, 2022, 309
  • [2] Short-term wind power forecasting based on two-stage attention mechanism
    Wang, Xiangwen
    Li, Pengbo
    Yang, Junjie
    IET RENEWABLE POWER GENERATION, 2020, 14 (02) : 297 - 304
  • [3] Short-Term Wind Power Prediction Based on Data Decomposition and Combined Deep Neural Network
    Wu, Xiaomei
    Jiang, Songjun
    Lai, Chun Sing
    Zhao, Zhuoli
    Lai, Loi Lei
    ENERGIES, 2022, 15 (18)
  • [4] Robust short-term prediction of wind turbine power based on combined neural networks
    Etemadi, Mostafa
    Abdollahi, Amir
    Rashidinejad, Masoud
    Aalami, Habib Allah
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (06)
  • [5] Short-term wind speed forecasting based on two-stage preprocessing method, sparrow search algorithm and long short-term memory neural network
    Ai, Xueyi
    Li, Shijia
    Xu, Haoxuan
    ENERGY REPORTS, 2022, 8 : 14997 - 15010
  • [6] Short-Term Solar Power Prediction Using an RBF Neural Network
    Zeng, Jianwu
    Qiao, Wei
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [7] Wind turbine short-term power forecasting method based on hybrid probabilistic neural network
    Deng, Jiewen
    Xiao, Zhao
    Zhao, Qiancheng
    Zhan, Jun
    Tao, Jie
    Liu, Minghua
    Song, Dongran
    ENERGY, 2024, 313
  • [8] Optimization of PSO-BP neural network for short-term wind power prediction
    Miao, Lu
    Fan, Wei
    Liu, Yu
    Qin, Yingjie
    Chen, Deyang
    Cui, Jiayan
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 2687 - 2692
  • [9] A new two-stage decomposition and integrated hybrid model for short-term wind speed prediction
    Han, Ying
    Zhang, Chi
    Li, Kun
    WIND ENGINEERING, 2024, 48 (05) : 835 - 860
  • [10] Short-Term Prediction of Wind Power Density Using Convolutional LSTM Network
    Gupta, Deepak
    Kumar, Vikas
    Ayus, Ishan
    Vasudevan, M.
    Natarajan, N.
    FME TRANSACTIONS, 2021, 49 (03): : 653 - 663