Learning Spatio-Temporal Specifications for Dynamical Systems

被引:0
|
作者
Alsalehi, Suhail [1 ]
Aasi, Erfan [2 ]
Weiss, Ron [3 ]
Belta, Calin [1 ,2 ]
机构
[1] Boston Univ, Div Syst Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[3] MIT, Biol Engn Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Dynamical Systems; Inference and Parameter Synthesis; Temporal Logics; SIGNAL TEMPORAL LOGIC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning dynamical systems properties from data provides valuable insights that help us understand such systems and mitigate undesired outcomes. We propose a framework for learning spatio-temporal (ST) properties as formal logic specifications from data. We introduce Support-Vector Machine-Signal Temporal Logic (SVM-STL), an extension of Signal Temporal Logic (STL), capable of specifying spatial and temporal properties of a wide range of systems exhibiting time-varying spatial patterns. Our framework utilizes machine learning techniques to learn SVM-STL specifications from system executions given by sequences of spatial patterns. We present methods to deal with both labeled and unlabeled data. In addition, given system requirements in the form of SVM-STL specifications, we provide an approach for parameter synthesis to find parameters that maximize the satisfaction of such specifications. Our learning framework and parameter synthesis approach are showcased in an example of a reaction-diffusion system.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Robotic Swarm Control from Spatio-Temporal Specifications
    Haghighi, Iman
    Sadraddini, Sadra
    Belta, Calin
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5708 - 5713
  • [12] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    PERCEPTION, 2012, 41 : 58 - 58
  • [13] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12
  • [14] Spatio-temporal systems in Chaucer
    Nakayasu, Minako
    SOCIOCULTURAL DIMENSIONS OF LEXIS AND TEXT IN THE HISTORY OF ENGLISH, 2018, 343 : 125 - 150
  • [15] Reinforcement learning-based estimation for spatio-temporal systems
    Mowlavi, Saviz
    Benosman, Mouhacine
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [16] Identification of partial differential equation models for continuous spatio-temporal dynamical systems
    Guo, Lingzhong
    Billings, Stephen A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (08) : 657 - 661
  • [17] State-space reconstruction and spatio-temporal prediction of lattice dynamical systems
    Guo, Lingzhong
    Billings, Stephen A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) : 622 - 632
  • [18] Identification of multiscale spatio-temporal dynamical systems using a wavelet multiresolution analysis
    Guo, L. Z.
    Billings, S. A.
    Coca, D.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (11) : 1115 - 1126
  • [19] Estimation of spatial derivatives and identification cation of continuous spatio-temporal dynamical systems
    Guo, L. Z.
    Billings, S. A.
    Wei, H. L.
    INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (09) : 1118 - 1135
  • [20] Multi-UAV cooperative surveillance with spatio-temporal specifications
    Ahmadzadeh, Ali
    Jadbabaie, Ali
    Kumar, Vijay
    Pappas, George J.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5293 - 5298