Learning Spatio-Temporal Specifications for Dynamical Systems

被引:0
|
作者
Alsalehi, Suhail [1 ]
Aasi, Erfan [2 ]
Weiss, Ron [3 ]
Belta, Calin [1 ,2 ]
机构
[1] Boston Univ, Div Syst Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[3] MIT, Biol Engn Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Dynamical Systems; Inference and Parameter Synthesis; Temporal Logics; SIGNAL TEMPORAL LOGIC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning dynamical systems properties from data provides valuable insights that help us understand such systems and mitigate undesired outcomes. We propose a framework for learning spatio-temporal (ST) properties as formal logic specifications from data. We introduce Support-Vector Machine-Signal Temporal Logic (SVM-STL), an extension of Signal Temporal Logic (STL), capable of specifying spatial and temporal properties of a wide range of systems exhibiting time-varying spatial patterns. Our framework utilizes machine learning techniques to learn SVM-STL specifications from system executions given by sequences of spatial patterns. We present methods to deal with both labeled and unlabeled data. In addition, given system requirements in the form of SVM-STL specifications, we provide an approach for parameter synthesis to find parameters that maximize the satisfaction of such specifications. Our learning framework and parameter synthesis approach are showcased in an example of a reaction-diffusion system.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems
    Huang, Yu
    Tang, Yufei
    Zhu, Xingquan
    Zhuang, Hanqi
    Cherubin, Laurent
    IEEE ACCESS, 2022, 10 : 112909 - 112920
  • [2] Detection of Spatio-Temporal Recurrent Patterns in Dynamical Systems
    Bonizzi, Pietro
    Peeters, Ralf
    Zeemering, Stef
    van Hunnik, Arne
    Meste, Olivier
    Karel, Joel
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [3] Modeling Spatio-Temporal Dynamical Systems With Neural Discrete Learning and Levels-of-Experts
    Wang, Kun
    Wu, Hao
    Zhang, Guibin
    Fang, Junfeng
    Liang, Yuxuan
    Wu, Yuankai
    Zimmermann, Roger
    Wang, Yang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4050 - 4062
  • [4] Asymptotic Stability Analysis for Switched Systems under Spatio-temporal Specifications
    Liu, Qian
    Long, Lijun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1469 - 1473
  • [5] Identification and analysis of spatio-temporal dynamical systems using wavelets
    Guo, L. Z.
    Billings, S. A.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (03) : 315 - 334
  • [6] Self organized development of behaviors in spatio-temporal dynamical systems
    Kozma, R
    Balister, P
    Bollobas, B
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2261 - 2264
  • [7] Model Predictive Control of Spatially Distributed Systems with Spatio-Temporal Logic Specifications
    Komizu, Ikkei
    Kobayashi, Koichi
    Yamashita, Yuh
    COMPUTATION, 2024, 12 (10)
  • [8] Spatio-temporal Trajectory Learning using Simulation Systems
    Glake, Daniel
    Panse, Fabian
    Lenfers, Ulfia
    Clemen, Thomas
    Ritter, Norbert
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 592 - 602
  • [9] Finite-Horizon Optimal Spatio-Temporal Pattern Control under Spatio-Temporal Logic Specifications
    Kinugawa, Takuma
    Ushio, Toshimitsu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (10) : 1658 - 1664
  • [10] Earthfarseer: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model
    Wu, Hao
    Liang, Yuxuan
    Xiong, Wei
    Zhou, Zhengyang
    Huang, Wei
    Wang, Shilong
    Wang, Kun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15906 - 15914