K -Convergence of Finite Volume Solutions of the Euler Equations

被引:0
|
作者
Lukacova-Medvid'ova, Maria [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9 | 2020年 / 323卷
关键词
Convergence analysis; Finite volume methods; Euler equations; Ill-posedness; Dissipative measure-valued solutions; K; -convergence; MEASURE-VALUED SOLUTIONS; SYSTEMS;
D O I
10.1007/978-3-030-43651-3_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review our recent results on the convergence of invariant domain-preserving finite volume solutions to the Euler equations of gas dynamics. If the classical solution exists we obtain strong convergence of numerical solutions to the classical one applying the weak-strong uniqueness principle. On the other hand, if the classical solution does not existwe adapt thewell-known Prokhorov compactness theorem to space-time probability measures that are generated by the sequences of finite volume solutions and show how to obtain the strong convergence in space and time of observable quantities. This can be achieved even in the case of ill-posed Euler equations having possibly many oscillatory solutions.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 50 条
  • [21] Adaptive stabilized finite volume method and convergence analysis for the Oseen equations
    Junxiang Lu
    Tong Zhang
    Boundary Value Problems, 2018
  • [22] Convergence of vortex methods for 3-D Euler equations
    Lin, JF
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (03) : 239 - 250
  • [23] Convergence of the Euler Method for Impulsive Neutral Delay Differential Equations
    Sun, Yang
    Zhang, Gui-Lai
    Wang, Zhi-Wei
    Liu, Tao
    Teodoro, M. Filomena
    Andrade, Marina Alexandra Pedro
    Raffoul, Youssef
    MATHEMATICS, 2023, 11 (22)
  • [24] Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations
    Yang, Jianwei
    Wang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [25] High order finite volume WENO schemes for the Euler equations under gravitational fields
    Li, Gang
    Xing, Yulong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 : 145 - 163
  • [26] A SECOND ORDER WELL-BALANCED FINITE VOLUME SCHEME FOR EULER EQUATIONS WITH GRAVITY
    Chandrashekar, Praveen
    Klingenberg, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : B382 - B402
  • [27] Convergence analysis of additive Schwarz for the Euler equations
    Dolean, V
    Lanteri, S
    Nataf, F
    APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) : 153 - 186
  • [28] Convergence analysis of a finite volume method for Maxwell's equations in nonhomogeneous media
    Chung, ET
    Du, Q
    Zou, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) : 37 - 63
  • [29] Convergence of a colocated finite volume scheme for the incompressible Navier-Stokes equations
    Zimmermann, S.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 619 - 622
  • [30] On convergence of approximate solutions to the compressible Euler system
    Eduard Feireisl
    Martina Hofmanová
    Annals of PDE, 2020, 6