Finding large additive and multiplicative Sidon sets in sets of integers

被引:0
作者
Jing, Yifan [1 ]
Mudgal, Akshat [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
关键词
11B30; 11B83; 05D40; NUMBER; THEOREM; BOUNDS; SIZE;
D O I
10.1007/s00208-024-02932-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given h,g is an element of N, we write a set X subset of Z to be a B-h(+)[g] set if for any n is an element of Z, the number of solutions to the additive equation n=x(1)+& ctdot;+x(h) with x(1),& mldr;,x(h )is an element of X is at most g, where we consider two such solutions to be the same if they differ only in the ordering of the summands. We define a multiplicative B-h(x)[g] set analogously. In this paper, we prove, amongst other results, that there exist absolute constants g is an element of N and delta>0 such that for any h is an element of N and for any finite set A of integers, the largest B-h(+)[g] set B inside A and the largest B-h(x)[g] set C inside A satisfy max{|B|,|C|}>>(h)|A|((1+delta)/h). In fact, when h=2, we may set g=31, and when h is sufficiently large, we may set g=1 and delta >>(loglogh)(1/2-o(1)). The former makes progress towards a recent conjecture of Klurman--Pohoata and quantitatively strengthens previous work of Shkredov.
引用
收藏
页码:685 / 715
页数:31
相关论文
共 30 条
  • [1] A LOW-ENERGY DECOMPOSITION THEOREM
    Balog, Antal
    Wooley, Trevor D.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (01) : 207 - 226
  • [2] An Upper Bound on the Size of Sidon Sets
    Balogh, Jozsef
    Fueredi, Zoltan
    Roy, Souktik
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (05) : 437 - 445
  • [3] Bose R. C., 1962, COMMENT MATH HELV, V37, P141
  • [4] On the size of k-fold sum and product sets of integers
    Bourgain, J
    Chang, MC
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (02) : 473 - 497
  • [5] A modular Szemeredi-Trotter theorem for hyperbolas
    Bourgain, Jean
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (17-18) : 793 - 796
  • [6] New upper bounds for finite Bh sequences
    Cilleruelo, J
    [J]. ADVANCES IN MATHEMATICS, 2001, 159 (01) : 1 - 17
  • [7] Erdos P., 1968, PUBL RAMANUJAN I, V1, P131
  • [8] Erdos P., 1983, P INT C WARS
  • [9] Erdos P, 1941, J. London Math. Soc, V16, P212, DOI [10.1112/jlms/s1-16.4.212, DOI 10.1112/JLMS/S1-16.4.212]
  • [10] Erds P., 1983, SUMS PRODUCTS INTEGE