Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates

被引:0
作者
Guo, Yuan [1 ,2 ]
Idrees, Muhammad [1 ,2 ,3 ,4 ]
Lin, Ji [1 ,2 ]
Li, Hui-jun [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[3] Zhejiang Normal Univ, Zhejiang Inst Photoelect, Jinhua 321004, Peoples R China
[4] Zhejiang Normal Univ, Zhejiang Inst Adv Light Source, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; spin-orbit coupling; rotation frequency; stripe solitons; vortex array; BREAKING; SYMMETRIES; PHASE;
D O I
10.1088/1572-9494/ad3e66
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a flexible manipulation and control of solitons via Bose-Einstein condensates. In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential, our investigation reveals the numerical local solutions within the system. By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation, diverse soliton structures emerge within the system. These include plane-wave solitons, two distinct types of stripe solitons, and odd petal solitons with both single and double layers. The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling. Specifically, stripe solitons can maintain a stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain a stable existence under similar conditions. When rotational frequency is introduced to the system, solitons undergo a transition from stripe solitons to a vortex array characterized by a sustained rotation. The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling. As a result, the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction [J].
Lu Hao ;
Zhu Shao-Bing ;
Qian Jun ;
Wang Yu-Zhu .
CHINESE PHYSICS B, 2015, 24 (09)
[32]   TRAVELING DARK-BRIGHT SOLITONS IN A REDUCED SPIN-ORBIT COUPLED SYSTEM: APPLICATION TO BOSE-EINSTEIN CONDENSATES [J].
D'Ambroise, J. ;
Frantzeskakis, D. J. ;
Kevrekidis, P. G. .
ROMANIAN REPORTS IN PHYSICS, 2018, 70 (01)
[33]   Two modes of soliton oscillations in spin-1 Bose-Einstein condensates governed by spin-orbit coupling [J].
Qi, Juan-Juan ;
Li, Zai-Dong ;
Zhao, Dun .
NONLINEAR DYNAMICS, 2025, 113 (13) :16993-17015
[34]   Simulating spin-orbit coupled Bose-Einstein condensates: A concise overview for non-experts [J].
Pollard, Dylan R. .
PHYSICS LETTERS A, 2025, 545
[35]   Stability of the half-vortex in spin-orbit coupled Bose-Einstein condensate [J].
Wu, Rukuan .
MODERN PHYSICS LETTERS B, 2016, 30 (36)
[36]   Bose-Einstein condensates in the presence of Weyl spin-orbit coupling [J].
Wu, Ting ;
Liao, Renyuan .
NEW JOURNAL OF PHYSICS, 2017, 19
[37]   Spin-density separation of spin-orbit coupled Bose-Einstein condensates under rotation [J].
Zhang, Xiao-Ru ;
Xu, Liang-Liang ;
Yang, Shi-Jie .
PHYSICS LETTERS A, 2023, 487
[38]   Instability of a two-dimensional Bose-Einstein condensate with Rashba spin-orbit coupling at finite temperature [J].
He, Pei-Song ;
Zhao, Jia ;
Geng, Ai-Cong ;
Xu, Deng-Hui ;
Hu, Rong .
PHYSICS LETTERS A, 2013, 377 (34-36) :2207-2209
[39]   Gap solitons of spin-orbit-coupled Bose-Einstein condensates in a Jacobian elliptic sine potential [J].
Wang, Qingqing ;
Tu, Pu ;
Ma, Jinping ;
Shao, Kaihua ;
Zhao, Xi ;
Xi, Baolong ;
Shi, Yuren .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 651
[40]   Oscillatory nondegenerate solitons in spin-orbit coupled spin-1/2 Bose-Einstein condensates with weak Raman coupling [J].
Liu, Fei-Yan ;
Triki, Houria ;
Zhou, Qin .
CHAOS SOLITONS & FRACTALS, 2024, 186