RECOGNITION OF GEOMAGNETIC STORMS FROM TIME SERIES OF MATRIX OBSERVATIONS WITH THE MUON HODOSCOPE URAGAN USING NEURAL NETWORKS OF DEEP LEARNING

被引:0
作者
Getmanov, V. G. [1 ,2 ]
Zajtsev, K. S. [3 ]
Gvishiani, A. D. [1 ,2 ]
Dunaev, M. E. [3 ]
Soloviev, A. A. [1 ,2 ]
Ehlakov, E., V [3 ]
机构
[1] Geophys Ctr RAS, Moscow, Russia
[2] Schmidt Inst Phys Earth RAS, Moscow, Russia
[3] Natl Reasearch Nucl Univ MEPhI, Moscow, Russia
来源
SOLAR-TERRESTRIAL PHYSICS | 2024年 / 10卷 / 01期
关键词
geomagnetic storms; recognition; neural networks; probabilities of correct and false recognitions; matrix observations; muon hodoscope; PREDICTION;
D O I
10.12737/stp-101202411
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We solve the problem of recognizing geomagnetic storms from time series of matrix observations with the URAGAN muon hodoscope, using deep learning neural networks. A variant of the neural network software module is selected and its parameters are determined. Geomagnetic storms are recognized using binary classification procedures; a decision -making rule is formed. We estimate probabilities of correct and false recognitions. The recognition of geomagnetic storms is experimentally studied; for the assigned Dst threshold Y D 0 =-45 nT we obtain acceptable probabilities of cor rect and false recognitions, which amount to beta=0.8212 and alpha=0.0047. We confirm the effectiveness and prospects of the proposed neural network approach.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 33 条
[1]  
[Anonymous], About us
[2]  
Astapov I.I., 2014, Muon Diagnostics of Earth's Magnetosphere and Atmosphere
[3]  
Ba J., 2015, P INT C LEARN REPR
[4]  
Barkhatov N.A., 2010, ARTIFICIAL NEURAL NE
[5]  
Belov A.V., 2022, J. Computer and Systems Sciences International, P56
[6]   THE FIRST COMPARATIVE ANALYSIS OF METEOR ECHO AND SPORADIC SCATTERING IDENTIFIED BY A SELF-LEARNING NEURAL NETWORK IN EKB AND MAGW ISTP SB RAS RADAR DATA [J].
Berngardt, O. I. .
SOLAR-TERRESTRIAL PHYSICS, 2022, 8 (04) :63-72
[7]   A novel loss function of deep learning in wind speed forecasting [J].
Chen, Xi ;
Yu, Ruyi ;
Ullah, Sajid ;
Wu, Dianming ;
Li, Zhiqiang ;
Li, Qingli ;
Qi, Honggang ;
Liu, Jihui ;
Liu, Min ;
Zhang, Yundong .
ENERGY, 2022, 238
[8]   Method for the Identification of Heliospheric Anomalies Based on the Functions of the Characteristic Deviations for the Observation Matrices of the Muon Hodoscope [J].
Chinkin, V. E. ;
Astapov, I. I. ;
Gvishiani, A. D. ;
Getmanov, V. G. ;
Dmitrieva, A. N. ;
Dobrovolsky, M. N. ;
Kovylyaeva, A. A. ;
Sidorov, R. V. ;
Soloviev, A. A. ;
Yashin, I. I. .
PHYSICS OF ATOMIC NUCLEI, 2019, 82 (06) :924-928
[9]  
Dolenko SA, 2005, LECT NOTES COMPUT SC, V3697, P527
[10]   The Prediction of the Dst-Index Based on Machine Learning Methods [J].
Efitorov, A. O. ;
Myagkova, I. N. ;
Shirokii, V. R. ;
Dolenko, S. A. .
COSMIC RESEARCH, 2018, 56 (06) :434-441