Spheroid Model of Mammary Tumor Cells: Epithelial-Mesenchymal Transition and Doxorubicin Response

被引:2
作者
Coelho, Laura Lacerda [1 ]
Vianna, Matheus Menezes [1 ]
da Silva, Debora Moraes [1 ]
Gonzaga, Beatriz Matheus de Souza [1 ]
Ferreira, Roberto Rodrigues [1 ]
Monteiro, Ana Carolina [2 ,3 ]
Bonomo, Adriana Cesar [3 ]
Manso, Pedro Paulo de Abreu [4 ]
de Carvalho, Marcelo Alex [5 ]
Vargas, Fernando Regla [6 ]
Garzoni, Luciana Ribeiro [1 ]
机构
[1] Oswaldo Cruz Fdn Fiocruz, Oswaldo Cruz Inst IOC, Lab Innovat Therapies Educ & Bioprod, BR-21040900 Rio De Janeiro, Brazil
[2] Fluminense Fed Univ UFF, Dept Immunobiol, Lab Osteo & Tumor Immunol, BR-24020150 Rio De Janeiro, Brazil
[3] Oswaldo Cruz Fdn Fiocruz, Oswaldo Cruz Inst IOC, Thymus Res Lab, BR-21040900 Rio De Janeiro, Brazil
[4] Oswaldo Cruz Fdn Fiocruz, Oswaldo Cruz Inst IOC, Lab Pathol, BR-21040900 Rio De Janeiro, Brazil
[5] Natl Canc Inst INCA, Res Ctr CPQ, BR-20231050 Rio De Janeiro, Brazil
[6] Oswaldo Cruz Fdn Fiocruz, Oswaldo Cruz Inst IOC, Lab Epidemiol Congenital Malformat, Rio De Janeiro, Brazil
来源
BIOLOGY-BASEL | 2024年 / 13卷 / 07期
关键词
breast cancer; three-dimensional cell culture; spheroids; doxorubicin; cell migration; epithelial-mesenchymal transition; BREAST-CANCER CELLS; VITRO CULTURE-SYSTEM; IN-VITRO; MULTICELLULAR SPHEROIDS; TARGETED THERAPIES; DRUG-DELIVERY; MIGRATION; INVASION; TISSUE; CHALLENGES;
D O I
10.3390/biology13070463
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary Breast cancer is the type of cancer that most affects women worldwide, and until today, it is difficult to find an effective treatment against this disease. Scientists are exploring new ways to test treatments using systems in the laboratory capable of mimicking tumors, called 3D models or spheroids. This study aimed to understand how breast cancer spheroids behave and respond to a common drug used in the clinic to treat cancer, doxorubicin. Understanding these processes could lead to improved treatments for breast cancer and other types of cancer. We found that the spheroids showed close features of real tumors and showed changes in proteins associated with cancer spread (metastasis). When the spheroids were treated with doxorubicin, the size of the spheroids was reduced, cells died, and the spread of breast cancer cells was also reduced. These results suggest, for the first time, that doxorubicin could be a good candidate to help stop cancer metastasis, which can be further studied.Abstract Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
引用
收藏
页数:22
相关论文
共 102 条
[1]   Metastatic and triple-negative breast cancer: challenges and treatment options [J].
Al-Mahmood, Sumayah ;
Sapiezynski, Justin ;
Garbuzenko, Olga B. ;
Minko, Tamara .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2018, 8 (05) :1483-1507
[2]   Breast cancer models: Engineering the tumor microenvironment [J].
Bahcecioglu, Gokhan ;
Basara, Gozde ;
Ellis, Bradley W. ;
Ren, Xiang ;
Zorlutuna, Pinar .
ACTA BIOMATERIALIA, 2020, 106 :1-21
[3]   EMT, MET, Plasticity, and Tumor Metastasis [J].
Bakir, Basil ;
Chiarella, Anna M. ;
Pitarresi, Jason R. ;
Rustgi, Anil K. .
TRENDS IN CELL BIOLOGY, 2020, 30 (10) :764-776
[4]   Doxorubicin in Combination with a Small TGFβ Inhibitor: A Potential Novel Therapy for Metastatic Breast Cancer in Mouse Models [J].
Bandyopadhyay, Abhik ;
Wang, Long ;
Agyin, Joseph ;
Tang, Yuping ;
Lin, Shu ;
Yeh, I-Tien ;
De, Keya ;
Sun, Lu-Zhe .
PLOS ONE, 2010, 5 (04)
[5]  
BCNA, 2023, ABOUT US
[6]   Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1 [J].
Bissell, MJ ;
Bilder, D .
BREAST CANCER RESEARCH, 2003, 5 (02) :117-119
[7]   Current methods for studying metastatic potential of tumor cells [J].
Bouchalova, Pavla ;
Bouchal, Pavel .
CANCER CELL INTERNATIONAL, 2022, 22 (01)
[8]   The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance [J].
Breslin, Susan ;
O'Driscoll, Lorraine .
ONCOTARGET, 2016, 7 (29) :45745-45756
[9]   A 3D in vitro model of the human breast duct: a method to unravel myoepithelial-luminal interactions in the progression of breast cancer [J].
Carter, Edward P. ;
Gopsill, James A. ;
Gomm, Jennifer. J. ;
Jones, J. Louise ;
Grose, Richard P. .
BREAST CANCER RESEARCH, 2017, 19
[10]   Breast cancer in Brazil: epidemiology and treatment challenges [J].
Cecilio, Adma Poliana ;
Takakura, Erika Tomie ;
Jumes, Jaqueline Janaina ;
dos Santos, Jeane Wilhelm ;
Herrera, Ana Cristina ;
Victorino, Vanessa Jacob ;
Panis, Carolina .
BREAST CANCER-TARGETS AND THERAPY, 2015, 7 :43-49