Bayesian Hierarchical Sparse Autoencoder for Massive MIMO CSI Feedback

被引:0
|
作者
Guo, Huayan [1 ]
Lau, Vincent K. N. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Quantization (signal); Training; Bayes methods; Dimensionality reduction; Decoding; Rate-distortion; Massive MIMO; deep learning; CSI feedback; variational autoencoder; CHANNEL ESTIMATION; LIMITED FEEDBACK; COMPRESSION; DESIGN; PILOT; MODEL;
D O I
10.1109/TSP.2024.3423660
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient channel state information (CSI) compression and feedback from user equipment to the base station (BS) are crucial for achieving the promised capacity gains in massive multiple-input multiple-output (MIMO) systems. Deep autoencoder (AE)-based schemes have been proposed to improve the efficiency of CSI compression and feedback. However, existing AE-based schemes suffer from critical issues in both CSI dimensionality reduction and latent feature quantization. In this paper, we propose a novel hierarchical sparse AE for efficient CSI compression and feedback for the 5G-NR fixed-length CSI feedback mechanism. Our approach employs a two-tier AE structure to jointly compress the sparse CSI latent feature and its side information. Additionally, we utilize a model-assisted Bayesian Rate-Distortion approach to train the weights of the AE. Specifically, the training loss function is formulated based on the variational Bayesian inference framework given a parametric Bernoulli Laplace Mixture prior model and a sparsity-inducing likelihood model. Furthermore, we propose a model-assisted adaptive coding algorithm to quantize the latent feature under the fixed codeword bit length constraint. Our experimental results demonstrate that the proposed solution outperforms existing AE-based schemes under various feedback budgets.
引用
收藏
页码:3213 / 3227
页数:15
相关论文
共 50 条
  • [31] A Spatially Separable Attention Mechanism for Massive MIMO CSI Feedback
    Mourya, Sharan
    Amuru, SaiDhiraj
    Kuchi, Kiran Kumar
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 40 - 44
  • [32] Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO
    Cao, Zheng
    Shih, Wan-Ting
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (08) : 2624 - 2628
  • [33] TransNet: Full Attention Network for CSI Feedback in FDD Massive MIMO System
    Cui, Yaodong
    Guo, Aihuang
    Song, Chunlin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 903 - 907
  • [34] Digital Twin Aided Massive MIMO: CSI Compression and Feedback
    Jiang, Shuaifeng
    Alkhateeb, Ahmed
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 3586 - 3591
  • [35] Enhancing Deep Learning Performance of Massive MIMO CSI Feedback
    Ji, Sijie
    Li, Mo
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4949 - 4954
  • [36] A Learnable Optimization and Regularization Approach to Massive MIMO CSI Feedback
    Hu, Zhengyang
    Liu, Guanzhang
    Xie, Qi
    Xue, Jiang
    Meng, Deyu
    Gunduz, Deniz
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (01) : 104 - 116
  • [37] Deep Autoencoder-based Massive MIMO CSI Feedback with Quantization and Entropy Coding
    Ravula, Sriram
    Jain, Swayambhoo
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [38] Disentangled Representation Learning Empowered CSI Feedback Using Implicit Channel Reciprocity in FDD Massive MIMO
    Xu, Wei
    Wu, Jie
    Jin, Shi
    You, Xiaohu
    Lu, Zhaohua
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15169 - 15184
  • [39] Zone-Specific CSI Feedback for Massive MIMO: A Situation-Aware Deep Learning Approach
    Zhang, Yu
    Alkhateeb, Ahmed
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (12) : 3320 - 3324
  • [40] Global-Local Features Reconstruction Network for FDD Massive MIMO CSI Feedback
    Tan, Yuyang
    Tan, Weiqiang
    Guo, Jiajia
    Shi, Zheng
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2255 - 2259