Analyticity estimates for the 3D magnetohydrodynamic equations

被引:0
作者
Liu, Wenjuan [1 ]
Peng, Jialing [2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710069, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 06期
基金
中国国家自然科学基金;
关键词
magnetohydrodynamic equations; the analyticity radius; Besov spaces; Gevrey regularity; global solution; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; RADIUS; REGULARITY;
D O I
10.3934/era.2024173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well -posed with initial data in the Besov space (center dot)Bs p,q(R3), in the critical Besov space B-center dot-1+3 p,q (R3), and in Lp(R3) with p is an element of]3, 6[, respectively. We also p obtained a new growth rate estimates for the analyticity radius.
引用
收藏
页码:3819 / 3842
页数:24
相关论文
共 25 条
[1]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]   On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades [J].
Biswas, Animikh ;
Foias, Ciprian .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) :739-777
[4]  
Chemin J-Y., 2004, ACTES JOURNEES MATH
[5]   On the radius of analyticity of solutions to semi-linear parabolic systems [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Zhang, Ping .
MATHEMATICAL RESEARCH LETTERS, 2020, 27 (06) :1631-1643
[6]   Wellposedness and stability results for the Navier-Stokes equations in R3 [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02) :599-624
[7]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[8]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[9]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[10]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8