Determination of an unknown coefficient in the Korteweg-de Vries equation

被引:0
作者
Sang, Lin [1 ,2 ]
Qiao, Yan [1 ,2 ]
Wu, Hua [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2024年 / 32卷 / 06期
基金
中国国家自然科学基金;
关键词
Korteweg-de Vries equation; inverse problem; error estimate; spectral method; CHEBYSHEV COLLOCATION METHOD; PARABOLIC INVERSE PROBLEM; GALERKIN;
D O I
10.1515/jiip-2024-0008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a space-time spectral method for solving an inverse problem in the Korteweg-de Vries equation is considered. Optimal order of convergence of the semi-discrete method is obtained in L 2 {L<^>{2}} -norm. The discrete schemes of the method are based on the modified Fourier pseudospectral method in spatial direction and the Legendre-tau method in temporal direction. The nonlinear term is computed via the fast Fourier transform and fast Legendre transform. The method is implemented by the explicit-implicit iterative method. Numerical results are given to show the accuracy and capability of this space-time spectral method.
引用
收藏
页码:1277 / 1289
页数:13
相关论文
共 17 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]   Inverse source problem for a generalized Korteweg-de Vries equation [J].
Arivazhagan, Anbu ;
Sakthivel, Kumarasamy ;
Balan, Natesan Barani .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (06) :823-848
[3]   On the determination of the principal coefficient from boundary measurements in a KdV equation [J].
Baudouin, Lucie ;
Cerpa, Eduardo ;
Crepeau, Emmanuelle ;
Mercado, Alberto .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (06) :819-845
[4]  
Dehghan M., 2003, Applied Mathematics and Computation, V136, P333, DOI 10.1016/S0096-3003(02)00047-4
[5]   Optimal error estimates for Fourier spectral approximation of the generalized KdV equation [J].
Deng, Zhen-guo ;
Ma, He-ping .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (01) :29-38
[6]   Chemoprophylaxis, diagnosis, treatments, and discharge management of COVID-19: An evidence-based clinical practice guideline (updated version) [J].
Jin, Ying-Hui ;
Zhan, Qing-Yuan ;
Peng, Zhi-Yong ;
Ren, Xue-Qun ;
Yin, Xun-Tao ;
Cai, Lin ;
Yuan, Yu-Feng ;
Yue, Ji-Rong ;
Zhang, Xiao-Chun ;
Yang, Qi-Wen ;
Ji, Jianguang ;
Xia, Jian ;
Li, Yi-Rong ;
Zhou, Fu-Xiang ;
Gao, Ya-Dong ;
Yu, Zhui ;
Xu, Feng ;
Tu, Ming-Li ;
Tan, Li-Ming ;
Yang, Min ;
Chen, Fang ;
Zhang, Xiao-Ju ;
Zeng, Mei ;
Zhu, Yu ;
Liu, Xin-Can ;
Yang, Jian ;
Zhao, Dong-Chi ;
Ding, Yu-Feng ;
Hou, Ning ;
Wang, Fu-Bing ;
Chen, Hao ;
Zhang, Yong-Gang ;
Li, Wei ;
Chen, Wen ;
Shi, Yue-Xian ;
Yang, Xiu-Zhi ;
Wang, Xue-Jun ;
Zhong, Yan-Jun ;
Zhao, Ming-Juan ;
Li, Bing-Hui ;
Ma, Lin-Lu ;
Zi, Hao ;
Wang, Na ;
Wang, Yun-Yun ;
Yu, Shao-Fu ;
Li, Lu-Yao ;
Huang, Qiao ;
Weng, Hong ;
Ren, Xiang-Ying ;
Luo, Li-Sha .
MILITARY MEDICAL RESEARCH, 2020, 7 (01)
[7]   STABILITY OF THE FOURIER METHOD [J].
KREISS, HO ;
OLIGER, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) :421-433
[8]   Error estimate of a Legendre-Galerkin Chebyshev collocation method for a class of parabolic inverse problem [J].
Liao, Huiqing ;
Ma, Heping .
APPLIED NUMERICAL MATHEMATICS, 2021, 170 :179-189
[9]   A nonlinear inverse problem of the Korteweg-de Vries equation [J].
Lu, Shengqi ;
Chen, Miaochao ;
Liu, Qilin .
BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
[10]   A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations [J].
Ma, HP ;
Sun, WW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1425-1438