Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review

被引:6
作者
Gurnani, B. [1 ]
Kaur, K. [2 ]
Lalgudi, V. G. [3 ]
Kundu, G. [4 ]
Mimouni, M. [5 ]
Liu, H. [6 ]
Jhanji, V. [7 ]
Prakash, G. [8 ]
Roy, A. S. [9 ]
Shetty, R. [4 ]
Gurav, J. S. [10 ]
机构
[1] ASG Eye Hosp, Dept Cataract Cornea External Dis Trauma Ocular Su, Jodhpur, Rajasthan, India
[2] ASG Eye Hosp, Dept Cataract Pediat Ophthalmol & Strabismus, Jodhpur, Rajasthan, India
[3] State Univ New York SUNY, Ira G Ross Eye Inst, Jacobs Sch Med & Biomed Sci, Dept Cornea Refract Surg, Buffalo, NY USA
[4] Narayana Nethralaya, Dept Cornea & Refract Surg, Bangalore, India
[5] Technion Israel Inst Technol, Rambam Hlth Care Campus, Dept Ophthalmol, Bruce & Ruth Rappaport Fac Med, Haifa, Israel
[6] Univ Ottawa, Inst Eye, Dept Ophthalmol, Ottawa, ON, Canada
[7] Univ Pittsburgh, Sch Med, UPMC Eye Ctr, Pittsburgh, PA USA
[8] Univ Pittsburgh, Sch Med, Dept Ophthalmol, Med Ctr, Pittsburgh, PA USA
[9] Narayana Nethralaya Fdn, Bangalore, India
[10] Armed Forces Med Coll, Dept Opthalmol, Pune, India
来源
JOURNAL FRANCAIS D OPHTALMOLOGIE | 2024年 / 47卷 / 07期
关键词
Artificial intelligence; Corneal disorders; Deep learning; Convolutional Neural Network; Machine learning; NEURAL-NETWORK; KERATOCONUS DETECTION; DIABETIC-RETINOPATHY; SUBCLINICAL KERATOCONUS; GLAND-DYSFUNCTION; DIAGNOSIS; CLASSIFICATION; CLASSIFIERS; VALIDATION; ALGORITHM;
D O I
10.1016/j.jfo.2024.104242
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
In the last decade, artificial intelligence (AI) has significantly impacted ophthalmology, particularly in managing corneal diseases, a major reversible cause of blindness. This review explores AI's transformative role in the corneal subspecialty, which has adopted advanced technology for superior clinical judgment, early diagnosis, and personalized therapy. While AI's role in anterior segment diseases is less documented compared to glaucoma and retinal pathologies, this review highlights its integration into corneal diagnostics through imaging techniques like slit-lamp biomicroscopy, anterior segment optical coherence tomography (AS-OCT), and in vivo confocal biomicroscopy. AI has been pivotal in refining decision-making and prognosis for conditions such as keratoconus, infectious keratitis, and dystrophies. Multi-disease deep learning neural networks (MDDNs) have shown diagnostic ability in classifying corneal diseases using ASOCT images, achieving notable metrics like an AUC of 0.910. AI's progress over two decades has significantly improved the accuracy of diagnosing conditions like keratoconus and microbial keratitis. For instance, AI has achieved a 90.7% accuracy rate in classifying bacterial and fungal keratitis and an AUC of 0.910 in differentiating various corneal diseases. Convolutional neural networks (CNNs) have enhanced the analysis of color-coded corneal maps, yielding up to 99.3% diagnostic accuracy for keratoconus. Deep learning algorithms have also shown robust performance in detecting fungal hyphae on in vivo confocal microscopy, with precise quantification of hyphal density. AI models combining tomography scans and visual acuity have demonstrated up to 97% accuracy in keratoconus staging according to the Amsler-Krumeich classification. However, the review acknowledges the limitations of current AI models, including their reliance on binary classification, which may not capture the complexity of real-world clinical presentations with multiple coexisting disorders. Challenges also include dependency on data quality, diverse imaging protocols, and integrating multimodal images for a generalized AI diagnosis. The need for interpretability in AI models is emphasized to foster trust and applicability in clinical settings. Looking ahead, AI has the potential to unravel the intricate mechanisms behind corneal pathologies, reduce healthcare's carbon footprint, and revolutionize diagnostic and management paradigms. Ethical and regulatory considerations will accompany AI's clinical adoption, marking an era where AI not only assists but augments ophthalmic care. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:39
相关论文
共 124 条
[1]   Keratoconus Severity Classification Using Features Selection and Machine Learning Algorithms [J].
Aatila, Mustapha ;
Lachgar, Mohamed ;
Hamid, Hrimech ;
Kartit, Ali .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
[2]   Neural network-based system for early keratoconus detection from corneal topography [J].
Accardo, PA ;
Pensiero, S .
JOURNAL OF BIOMEDICAL INFORMATICS, 2002, 35 (03) :151-159
[3]   A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images [J].
Al-Fandawi, Shumoos ;
Qahwaji, Rami ;
Al-Waisy, Alaa S. ;
Ipson, Stanley ;
Malik, Rayaz A. ;
Brahma, Arun ;
Chen, Xin .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 135 :151-166
[4]   A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps [J].
Al-Timemy, Ali H. ;
Mosa, Zahraa M. ;
Alyasseri, Zaid ;
Lavric, Alexandru ;
Lui, Marcelo M. ;
Hazarbassanov, Rossen M. ;
Yousefi, Siamak .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (14)
[5]   New artificial intelligence index based on Scheimpflug corneal tomography to distinguish subclinical keratoconus from healthy corneas [J].
Almeida, Gildasio Castello, Jr. ;
Guido, Rodrigo Capobianco ;
Balarin Silva, Henrique Monteiro ;
Brandao, Cinara Cassia ;
de Mattos, Luiz Carlos ;
Lopes, Bernardo T. ;
Machado, Aydano Pamponet ;
Ambrosio, Renato, Jr. .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2022, 48 (10) :1168-1174
[6]   Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data [J].
Ambrosio, Renato, Jr. ;
Machado, Aydano P. ;
Leao, Edileuza ;
Lyra, Joao Marcelo G. ;
Salomao, Marcella Q. ;
Esporcatte, Louise G. Pellegrino ;
Da Fonseca Filho, Joaob. R. ;
Ferreira-Meneses, Erica ;
Sena, Nelson B., Jr. ;
Haddad, Jorge S. ;
Neto, Alexandre Costa ;
De Almeida, Gildasio Castelo, Jr. ;
Roberts, Cynthia J. ;
Elsheikh, Ahmed ;
Vinciguerra, Riccardo ;
Vinciguerra, Paolo ;
Buhren, Jens ;
Kohnen, Thomas ;
Kezirian, Guy M. ;
Hafezi, Farhad ;
Hafezi, Nikki L. ;
Torres-Netto, Emilio A. ;
Lu, Nanji ;
Kang, David Sung Yong ;
Kermani, Omid ;
Koh, Shizuka ;
Padmanabhan, Prema ;
Taneri, Suphi ;
Trattler, William ;
Gualdi, Luca ;
Salgado-Borges, Jose ;
Faria-Correia, Fernando ;
Flockerzi, Elias ;
Seitz, Berthold ;
Jhanji, Vishal ;
Chan, Tommy C. Y. ;
Baptista, Pedro Manuel ;
Reinstein, Dan Z. ;
Archer, Timothy J. ;
Rocha, Karolinne M. ;
Waring, George O. ;
Krueger, Ronald R. ;
Dupps, William J. ;
Khoramnia, Ramin ;
Hashemi, Hassan ;
Asgari, Soheila ;
Momeni-Moghaddam, Hamed ;
Zarei-Ghanavati, Siamak ;
Shetty, Rohit ;
Khamar, Pooja .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2023, 251 :126-142
[7]   Overview of artificial intelligence in medicine [J].
Amisha ;
Malik, Paras ;
Pathania, Monika ;
Rathaur, Vyas Kumar .
JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2019, 8 (07) :2328-2331
[8]   Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions [J].
Anton, Nicoleta ;
Doroftei, Bogdan ;
Curteanu, Silvia ;
Catalin, Lisa ;
Ilie, Ovidiu-Dumitru ;
Tarcoveanu, Filip ;
Bogdanici, Camelia Margareta .
DIAGNOSTICS, 2023, 13 (01)
[9]   Medical Image Analysis using Convolutional Neural Networks: A Review [J].
Anwar, Syed Muhammad ;
Majid, Muhammad ;
Qayyum, Adnan ;
Awais, Muhammad ;
Alnowami, Majdi ;
Khan, Muhammad Khurram .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
[10]   Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data [J].
Arbelaez, Maria Clara ;
Versaci, Francesco ;
Vestri, Gabriele ;
Barboni, Piero ;
Savini, Giacomo .
OPHTHALMOLOGY, 2012, 119 (11) :2231-2238