SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models

被引:0
作者
Li, Hongxin [1 ,2 ]
Su, Jingran [3 ,4 ]
Chen, Yuntao [3 ]
Li, Qing [4 ]
Zhang, Zhaoxiang [1 ,2 ,3 ,5 ]
机构
[1] Univ Chinese Acad Sci UCAS, Sch Artificial Intelligence, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence, Beijing, Peoples R China
[3] Chinese Acad Sci, HKISI, Ctr Artificial Intelligence & Robot, Beijing, Peoples R China
[4] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[5] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer end users have spent billions of hours completing daily tasks like tabular data processing and project timeline scheduling. Most of these tasks are repetitive and error-prone, yet most end users lack the skill to automate these burdensome works. With the advent of large language models (LLMs), directing software with natural language user requests become a reachable goal. In this work, we propose a SheetCopilot agent that takes natural language task and control spreadsheet to fulfill the requirements. We propose a set of atomic actions as an abstraction of spreadsheet software functionalities. We further design a state machine-based task planning framework for LLMs to robustly interact with spreadsheets. We curate a representative dataset containing 221 spreadsheet control tasks and establish a fully automated evaluation pipeline for rigorously benchmarking the ability of LLMs in software control tasks. Our SheetCopilot correctly completes 44.3% of tasks for a single generation, outperforming the strong code generation baseline by a wide margin. Our project page: https://sheetcopilot.github.io/.
引用
收藏
页数:33
相关论文
共 32 条
[21]   Competition-level code generation with AlphaCode [J].
Li, Yujia ;
Choi, David ;
Chung, Junyoung ;
Kushman, Nate ;
Schrittwieser, Julian ;
Leblond, Remi ;
Eccles, Tom ;
Keeling, James ;
Gimeno, Felix ;
Dal Lago, Agustin ;
Hubert, Thomas ;
Choy, Peter ;
d'Autume, Cyprien de Masson ;
Babuschkin, Igor ;
Chen, Xinyun ;
Huang, Po-Sen ;
Welbl, Johannes ;
Gowal, Sven ;
Cherepanov, Alexey ;
Molloy, James ;
Mankowitz, Daniel J. ;
Robson, Esme Sutherland ;
Kohli, Pushmeet ;
de Freitas, Nando ;
Kavukcuoglu, Koray ;
Vinyals, Oriol .
SCIENCE, 2022, 378 (6624) :1092-1097
[22]  
Liang Yixun, 2023, ARXIV
[23]  
Nakano R., 2021, ARXIV
[24]  
Ortega Pedro A, 2021, arXiv
[25]  
Paranjape Bhargavi, 2023, arXiv
[26]  
Schick T, 2023, ADV NEUR IN
[27]  
Shen Y., 2023, ARXIV
[28]   FIDEX: Filtering Spreadsheet Data using Examples [J].
Wang, Xinyu ;
Gulwani, Sumit ;
Singh, Rishabh .
ACM SIGPLAN NOTICES, 2016, 51 (10) :195-213
[29]   Neural Rendering for Stereo 3D Reconstruction of Deformable Tissues in Robotic Surgery [J].
Wang, Yuehao ;
Long, Yonghao ;
Fan, Siu Hin ;
Dou, Qi .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 :431-441
[30]  
Wei JS, 2022, ADV NEUR IN