Aluminum/Graphene Thermal Interface Materials with Positive Temperature Dependence

被引:2
作者
Cai, Wanwan [1 ]
Lu, Yongkuan [1 ]
Wang, Chenxi [1 ]
Li, Qingbiao [1 ]
Zheng, Yanmei [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem & Biochem Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal interface materials; graphene; Al nanoparticles; through-plane thermal conductivity; positive temperaturedependence; MANAGEMENT; CONDUCTIVITY; PAPER; NANOSHEETS;
D O I
10.1021/acsami.4c06022
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene is widely used in excellent thermal interface materials (TIMs), thanks to its remarkably high in-plane thermal conductivity (k(parallel to)). However, the poor through-plane thermal conductivity (k(perpendicular to)) limits its further application. Here, we developed a simple in situ growth method to prepare graphene-based thermal interface composites with positively temperature-dependent thermal conductivity, which loaded aluminum (Al) nanoparticles onto graphene nanoplatelets (GNPs). To evaluate the variations in thermal performance, we determined the thermal diffusivity and specific heat capacity of the composites using a laser-flash analyzer and a differential scanning calorimeter, respectively. The Al nanoparticles act as bridges between the nanoplatelets, enhancing the k(perpendicular to) of the 1.3-Al/GNPs composite to 11.70 W<middle dot>m(-1)<middle dot>K-1 at 25 degrees C. Even more remarkably, those nanoparticles led to a unique increase in k(perpendicular to) with temperature, reaching 20.93 W<middle dot>m(-1)<middle dot>K-1 at 100 degrees C. Additionally, we conducted an in-depth investigation of the thermal conductivity mechanism of the Al/GNPs composites. The exceptional heat transport property enabled the composites to exhibit a superior heat dissipation performance in simulated practical applications. This work provides valuable insights into utilizing graphene in composites with Al nanoparticles, which have special thermal conductivity properties, and offers a promising pathway to enhance the k(perpendicular to) of graphene-based TIMs.
引用
收藏
页码:33993 / 34000
页数:8
相关论文
共 41 条
[1]   Thermal management of electronics: A review of literature [J].
Anandan, S. S. ;
Ramalingam, V. .
THERMAL SCIENCE, 2008, 12 (02) :5-26
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Synthesis of Al nanoparticles: Transmission electron microscopy, thermal and spectral studies [J].
Chandra, Sulekh ;
Kumar, Avdhesh ;
Tomar, Praveen Kumar .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2012, 92 :392-397
[4]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[5]   Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite [J].
Chen, Yapeng ;
Hou, Xiao ;
Liao, Meizhen ;
Dai, Wen ;
Wang, Zhongwei ;
Yan, Chao ;
Li, He ;
Lin, Cheng-Te ;
Jiang, Nan ;
Yu, Jinhong .
CHEMICAL ENGINEERING JOURNAL, 2020, 381
[6]   LEDs for Solid-State Lighting: Performance Challenges and Recent Advances [J].
Crawford, Mary H. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (04) :1028-1040
[7]   Dynamic Thermal Management for Aerospace Technology: Review and Outlook [J].
Doty, J. ;
Yerkes, K. ;
Byrd, L. ;
Murthy, J. ;
Alleyne, A. ;
Wolff, M. ;
Heister, S. ;
Fisher, T. S. .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2017, 31 (01) :86-98
[8]   CORE-LEVEL BINDING-ENERGY SHIFTS IN LIQUID BINARY-ALLOYS - AU-GA [J].
DURRWACHTER, M ;
INDLEKOFER, G ;
BOYEN, HG ;
OELHAFEN, P ;
QUITMANN, D .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 156 (pt 1) :241-245
[9]   Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm-1K-1 [J].
Feng, Chang-Ping ;
Chen, Li-Bo ;
Tian, Guo-Liang ;
Bai, Lu ;
Bao, Rui-Ying ;
Liu, Zheng-Ying ;
Ke, Kai ;
Yang, Ming-Bo ;
Yang, Wei .
CHEMICAL ENGINEERING JOURNAL, 2020, 392
[10]   Phonons in nanocrystalline Fe-57 [J].
Fultz, B ;
Ahn, CC ;
Alp, EE ;
Sturhahn, W ;
Toellner, TS .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :937-940