Techno-economic analysis of blue ammonia synthesis using cryogenic CO2 capture Process-A Danish case investigation

被引:4
作者
Asgharian, Hossein [1 ]
Baxter, Larry [1 ,2 ,3 ]
Iov, Florin [1 ]
Cui, Xiaoti [1 ]
Araya, Samuel Simon [4 ]
Nielsen, Mads Pagh [1 ]
Liso, Vincenzo [1 ]
机构
[1] Aalborg Univ, Dept AAU Energy, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark
[2] Sustainable Energy Solut Chart Co, 1489 West 105 North, Orem, UT 84057 USA
[3] Brigham Young Univ, Dept Chem Engn, 350 CB, Provo, UT 84602 USA
[4] Luxembourg Inst Sci & Technol, Mat Res & Technol Dev MRT, Luxembourg, Luxembourg
关键词
Blue ammonia; CryogenicCO2 capture process; Techno-economic analysis; CO2; emission; HYDROGEN; ENERGY; STEAM; PREDICTION; SEPARATION; EXERGY; H-2;
D O I
10.1016/j.ijhydene.2024.05.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia is a vital chemical with numerous applications. Currently, the primary methods for generating the necessary reactants for ammonia production involve steam methane reforming (SMR) and cryogenic air separation unit (CASU), while the Haber-Bosch process converts these reactants into ammonia. However, the SMR process releases substantial amounts of CO 2 , making it imperative to employ an efficient and cost-effective CO 2 capture technology to mitigate emissions. This investigation focuses on evaluating the cryogenic CO 2 capture (CCC) process for blue ammonia production and provides a thorough economic analysis, estimating both the initial investment costs and operational expenses involved in producing blue ammonia. The results indicated that the CCC process can capture 90% of the CO 2 content in the flue gas emitted by the SMR, incurring an energy penalty of 0.724 MJ e / kg CO 2 while capturing CO 2 in the liquid phase with purities exceeding 99.9%. In this case, the estimated CO 2 capture costs would be 18.05, 45.1, and 16.65 USD/ton in 2021, 2022, and 2023, respectively. This represents a 40% reduction compared to the CO 2 capture costs associated with conventional amine-based technology. The results of this study indicate that the annual electricity costs for ammonia production increase by 38.5% and 64.2% when employing the CCC and amine-based processes, respectively. This investigation employed an isothermal reactor for ammonia synthesis, using the heat from the exothermic reaction in a water ammonia absorption refrigeration cycle (ARC) to condense and purify ammonia. The results show that the ARC system can effectively condense ammonia at -6 degrees C, producing a liquid ammonia stream with 99.3% purity. This leads to a 95% reduction in power consumption compared to a vapor compression refrigeration cycle (VCRC). Consequently, this method has the potential to decrease the annual operational costs for ammonia production by 2.92%, 2.69%, and 3.13% in 2021, 2022, and 2023, respectively. This study indicated that the hydrogen production unit incurs the highest initial investment costs, as well as operating costs, in the blue ammonia production process, followed by CASU and the Haber-Bosch process.
引用
收藏
页码:608 / 618
页数:11
相关论文
共 50 条
  • [21] CO2-selective membranes for hydrogen production and CO2 capture - Part II: Techno-economic analysis
    Lin, Haiqing
    He, Zhenjie
    Sun, Zhen
    Kniep, Jay
    Ng, Alvin
    Baker, Richard W.
    Merkel, Timothy C.
    JOURNAL OF MEMBRANE SCIENCE, 2015, 493 : 794 - 806
  • [22] Techno-economic performance of enhanced sodium carbonate-based CO2 capture process
    Melin, Kristian
    Hurskainen, Markus
    Nevander, Miia
    Kajolinna, Tuula
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2025, 141
  • [23] Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture
    Aromada, Solomon Aforkoghene
    Eldrup, Nils Henrik
    Normann, Fredrik
    Oi, Lars Erik
    ENERGIES, 2020, 13 (23)
  • [24] Techno-economic assessment of CO2 direct air capture plants
    Fasihi, Mandi
    Efimova, Olga
    Breyer, Christian
    JOURNAL OF CLEANER PRODUCTION, 2019, 224 : 957 - 980
  • [25] Implementation of the Power to Methanol concept by using CO2 from lignite power plants: Techno-economic investigation
    Kourkoumpas, D. S.
    Papadimou, E.
    Atsonios, K.
    Karellas, S.
    Grammelis, P.
    Kakaras, E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (38) : 16674 - 16687
  • [26] Techno-Economic Analysis of CO2 Capture from Pulp and Paper Mill Limekiln
    Parkhi, Amod
    Cremaschi, Selen
    Jiang, Zhihua
    IFAC PAPERSONLINE, 2022, 55 (07): : 284 - 291
  • [27] Techno-Economic Analysis of CO2 Capture Processes from Coal-fired Power Plants
    Yun, Seokwon
    Lee, Sunghoon
    Kim, Jin-Kuk
    28TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2018, 43 : 1519 - 1520
  • [28] Techno-economic modelling and cost functions of CO2 capture processes
    Klemes, J
    Bulatov, I
    Cockerill, T
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 295 - 300
  • [29] Techno-economic modelling and cost functions of CO2 capture processes
    Klemes, Jiri
    Bulatov, Igor
    Cockerill, Tim
    COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (5-6) : 445 - 455
  • [30] Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane
    Deng, Liyuan
    Hagg, May-Britt
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (04) : 638 - 646