Techno-economic analysis of blue ammonia synthesis using cryogenic CO2 capture Process-A Danish case investigation

被引:4
|
作者
Asgharian, Hossein [1 ]
Baxter, Larry [1 ,2 ,3 ]
Iov, Florin [1 ]
Cui, Xiaoti [1 ]
Araya, Samuel Simon [4 ]
Nielsen, Mads Pagh [1 ]
Liso, Vincenzo [1 ]
机构
[1] Aalborg Univ, Dept AAU Energy, Pontoppidanstraede 111, DK-9220 Aalborg, Denmark
[2] Sustainable Energy Solut Chart Co, 1489 West 105 North, Orem, UT 84057 USA
[3] Brigham Young Univ, Dept Chem Engn, 350 CB, Provo, UT 84602 USA
[4] Luxembourg Inst Sci & Technol, Mat Res & Technol Dev MRT, Luxembourg, Luxembourg
关键词
Blue ammonia; CryogenicCO2 capture process; Techno-economic analysis; CO2; emission; HYDROGEN; ENERGY; STEAM; PREDICTION; SEPARATION; EXERGY; H-2;
D O I
10.1016/j.ijhydene.2024.05.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia is a vital chemical with numerous applications. Currently, the primary methods for generating the necessary reactants for ammonia production involve steam methane reforming (SMR) and cryogenic air separation unit (CASU), while the Haber-Bosch process converts these reactants into ammonia. However, the SMR process releases substantial amounts of CO 2 , making it imperative to employ an efficient and cost-effective CO 2 capture technology to mitigate emissions. This investigation focuses on evaluating the cryogenic CO 2 capture (CCC) process for blue ammonia production and provides a thorough economic analysis, estimating both the initial investment costs and operational expenses involved in producing blue ammonia. The results indicated that the CCC process can capture 90% of the CO 2 content in the flue gas emitted by the SMR, incurring an energy penalty of 0.724 MJ e / kg CO 2 while capturing CO 2 in the liquid phase with purities exceeding 99.9%. In this case, the estimated CO 2 capture costs would be 18.05, 45.1, and 16.65 USD/ton in 2021, 2022, and 2023, respectively. This represents a 40% reduction compared to the CO 2 capture costs associated with conventional amine-based technology. The results of this study indicate that the annual electricity costs for ammonia production increase by 38.5% and 64.2% when employing the CCC and amine-based processes, respectively. This investigation employed an isothermal reactor for ammonia synthesis, using the heat from the exothermic reaction in a water ammonia absorption refrigeration cycle (ARC) to condense and purify ammonia. The results show that the ARC system can effectively condense ammonia at -6 degrees C, producing a liquid ammonia stream with 99.3% purity. This leads to a 95% reduction in power consumption compared to a vapor compression refrigeration cycle (VCRC). Consequently, this method has the potential to decrease the annual operational costs for ammonia production by 2.92%, 2.69%, and 3.13% in 2021, 2022, and 2023, respectively. This study indicated that the hydrogen production unit incurs the highest initial investment costs, as well as operating costs, in the blue ammonia production process, followed by CASU and the Haber-Bosch process.
引用
收藏
页码:608 / 618
页数:11
相关论文
共 50 条
  • [1] Scale-Dependent Techno-Economic Analysis of CO2 Capture and Electroreduction to Ethylene
    Alerte, Theo
    Gaona, Adriana
    Edwards, Jonathan P.
    Gabardo, Christine M.
    O'Brien, Colin P.
    Wicks, Joshua
    Bonnenfant, Loann
    Rasouli, Armin Sedighian
    Young, Daniel
    Abed, Jehad
    Kershaw, Luke
    Xiao, Yurou Celine
    Sarkar, Amitava
    Jaffer, Shaffiq A.
    Schreiber, Moritz W.
    Sinton, David
    MacLean, Heather L.
    Sargent, Edward H.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (43): : 15651 - 15662
  • [2] Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture
    Man, Yi
    Yang, Siyu
    Xiang, Dong
    Li, Xiuxi
    Qian, Yu
    JOURNAL OF CLEANER PRODUCTION, 2014, 71 : 59 - 66
  • [3] Techno-economic analysis of polygeneration systems with carbon capture and storage and CO2 reuse
    Ng, Kok Siew
    Zhang, Nan
    Sadhukhan, Jhuma
    CHEMICAL ENGINEERING JOURNAL, 2013, 219 : 96 - 108
  • [4] A comprehensive techno-economic analysis method for power generation systems with CO2 capture
    Xu, Gang
    Jin, HongGuang
    Yang, YongPing
    Xu, YuJie
    Lin, Hu
    Duan, Liqiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (04) : 321 - 332
  • [5] Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas
    Kim, Seonghun
    Jeong, Dong Hwi
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (08) : 1999 - 2009
  • [6] Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
    Daniel, Thorin
    Masini, Alice
    Milne, Cameron
    Nourshagh, Neeka
    Iranpour, Cameron
    Xuan, Jin
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [7] Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation
    Lv, Zongze
    Du, Hong
    Xu, Shaojun
    Deng, Tao
    Ruan, Jiaqi
    Qin, Changlei
    APPLIED ENERGY, 2024, 355
  • [8] A porous phenolic resin sorbent for enhanced CO2 capture: Synthesis, optimization, and techno-economic analysis
    Abdalla, Mahmoud A.
    Zentou, Hamid
    Abdulhamid, Mahmoud A.
    Mohammed, Mohammed G.
    Abdelnaby, Mahmoud M.
    Abdelaziz, Omar Y.
    FUEL, 2025, 379
  • [9] A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture
    Chang, Pei Thing
    Ng, Qi Hwa
    Ahmad, Abdul Latif
    Low, Siew Chun
    CHEMICAL ENGINEERING COMMUNICATIONS, 2022, 209 (11) : 1553 - 1569
  • [10] Techno-economic analysis of methanol and ammonia co-producing process using CO2 from blast furnace gas
    Seonghun Kim
    Dong Hwi Jeong
    Korean Journal of Chemical Engineering, 2022, 39 : 1999 - 2009