Magnetic resonance imaging-based lymph node radiomics for predicting the metastasis of evaluable lymph nodes in rectal cancer

被引:3
作者
Ye, Yong-Xia [1 ,2 ,3 ]
Yang, Liu [4 ,5 ,6 ]
Kang, Zheng [1 ,2 ,3 ]
Wang, Mei-Qin [1 ,2 ,3 ]
Xie, Xiao-Dong [1 ,2 ,3 ]
Lou, Ke-Xin [2 ,3 ,7 ]
Bao, Jun [2 ,3 ,8 ]
Du, Mei [1 ,2 ,3 ]
Li, Zhe-Xuan [1 ,2 ,3 ]
机构
[1] Nanjing Med Univ, Affiliated Canc Hosp, Dept Radiol, Nanjing 210011, Jiangsu, Peoples R China
[2] Jiangsu Canc Hosp, Nanjing 210011, Jiangsu, Peoples R China
[3] Jiangsu Inst Canc Res, Nanjing 210011, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Jiangsu Canc Hosp, Dept Colorectal Surg, 42 Baiziting Rd, Nanjing 210000, Jiangsu, Peoples R China
[5] Nanjing Med Univ, Jiangsu Inst Canc Res, 42 Baiziting Rd, Nanjing 210000, Jiangsu, Peoples R China
[6] Nanjing Med Univ, Affiliated Canc Hosp, 42 Baiziting Rd, Nanjing 210000, Jiangsu, Peoples R China
[7] Nanjing Med Univ, Affiliated Canc Hosp, Dept Pathol, Nanjing 210011, Jiangsu, Peoples R China
[8] Nanjing Med Univ, Affiliated Canc Hosp, Colorectal Ctr, Nanjing 210011, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Radiomics; Lymph node metastasis; Rectal cancer; Magnetic resonance imaging; MRI; ACCURACY; CRITERIA; STAGE;
D O I
10.4251/wjgo.v16.i5.1849
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND Lymph node (LN) staging in rectal cancer (RC) affects treatment decisions and patient prognosis. For radiologists, the traditional preoperative assessment of LN metastasis (LNM) using magnetic resonance imaging (MRI) poses a challenge. AIM To explore the value of a nomogram model that combines Conventional MRI and radiomics features from the LNs of RC in assessing the preoperative metastasis of evaluable LNs. METHODS In this retrospective study, 270 LNs (158 nonmetastatic, 112 metastatic) were randomly split into training (n = 189) and validation sets (n = 81). LNs were classified based on pathology-MRI matching. Conventional MRI features [size, shape, margin, T2-weighted imaging (T2WI) appearance, and CE-T1-weighted imaging (T1WI) enhancement] were evaluated. Three radiomics models used 3D features from T1WI and T2WI images. Additionally, a nomogram model combining conventional MRI and radiomics features was developed. The model used univariate analysis and multivariable logistic regression. Evaluation employed the receiver operating characteristic curve, with DeLong test for comparing diagnostic performance. Nomogram performance was assessed using calibration and decision curve analysis. RESULTS The nomogram model outperformed conventional MRI and single radiomics models in evaluating LNM. In the training set, the nomogram model achieved an area under the curve (AUC) of 0.92, which was significantly higher than the AUCs of 0.82 (P < 0.001) and 0.89 (P < 0.001) of the conventional MRI and radiomics models, respectively. In the validation set, the nomogram model achieved an AUC of 0.91, significantly surpassing 0.80 (P < 0.001) and 0.86 (P < 0.001), respectively. CONCLUSION The nomogram model showed the best performance in predicting metastasis of evaluable LNs.
引用
收藏
页码:1849 / 1860
页数:13
相关论文
共 34 条
  • [1] MRI Lymph Node Evaluation for Prediction of Metastases in Rectal Cancer
    Almlov, Karin
    Woisetschlager, Mischa
    Loftas, Per
    Hallbook, Olof
    Elander, Nils O.
    Sandstrom, Per
    [J]. ANTICANCER RESEARCH, 2020, 40 (05) : 2757 - 2763
  • [2] Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis
    Bedrikovetski, Sergei
    Dudi-Venkata, Nagendra N.
    Kroon, Hidde M.
    Seow, Warren
    Vather, Ryash
    Carneiro, Gustavo
    Moore, James W.
    Sammour, Tarik
    [J]. BMC CANCER, 2021, 21 (01)
  • [3] Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting
    Beets-Tan, Regina G. H.
    Lambregts, Doenja M. J.
    Maas, Monique
    Bipat, Shandra
    Barbaro, Brunella
    Curvo-Semedo, Luis
    Fenlon, Helen M.
    Gollub, Marc J.
    Gourtsoyianni, Sofia
    Halligan, Steve
    Hoeffel, Christine
    Kim, Seung Ho
    Laghi, Andrea
    Maier, Andrea
    Rafaelsen, Soren R.
    Stoker, Jaap
    Taylor, Stuart A.
    Torkzad, Michael R.
    Blomqvist, Lennart
    [J]. EUROPEAN RADIOLOGY, 2018, 28 (04) : 1465 - 1475
  • [4] Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison
    Brown, G
    Richards, CJ
    Bourne, MW
    Newcombe, RG
    Radcliffe, AG
    Dallimore, NS
    Williams, GT
    [J]. RADIOLOGY, 2003, 227 (02) : 371 - 377
  • [5] Value of High-resolution MRI in Detecting Lymph Node Calcifications in Patients with Rectal Cancer
    Chen, Yan
    Wen, Ziqiang
    Liu, Yiyan
    Yang, Xinyue
    Ma, Yuru
    Lu, Baolan
    Xiao, Xiaojuan
    Yu, Shenping
    [J]. ACADEMIC RADIOLOGY, 2020, 27 (12) : 1709 - 1717
  • [6] Accuracy of magnetic resonance imaging staging of tumour and nodal stage in rectal cancer treated by primary surgery: a population-based study
    Dahlback, Cecilia
    Korsbakke, Kevin
    Bergman, Thule Alshibiby
    Zaki, Jorgen
    Zackrisson, Sophia
    Buchwald, Pamela
    [J]. COLORECTAL DISEASE, 2022, 24 (09) : 1047 - 1053
  • [7] MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer
    Fang, Zhu
    Pu, Hong
    Chen, Xiao-li
    Yuan, Yi
    Zhang, Feng
    Li, Hang
    [J]. ABDOMINAL RADIOLOGY, 2023, 48 (07) : 2270 - 2283
  • [8] Use of magnetic resonance imaging in rectal cancer patients: Society of Abdominal Radiology (SAR) rectal cancer disease-focused panel (DFP) recommendations 2017
    Gollub, Marc J.
    Arya, Supreeta
    Beets-Tan, Regina G. H.
    dePrisco, Gregory
    Gonen, Mithat
    Jhaveri, Kartik
    Kassam, Zahra
    Kaur, Harmeet
    Kim, David
    Knezevic, Andrea
    Korngold, Elena
    Lall, Chandana
    Lalwani, Neeraj
    Macdonald, D. Blair
    Moreno, Courtney
    Nougaret, Stephanie
    Pickhardt, Perry
    Sheedy, Shannon
    Harisinghani, Mukesh
    [J]. ABDOMINAL RADIOLOGY, 2018, 43 (11) : 2893 - 2902
  • [9] Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer with Magnetic Resonance Imaging
    Groene, Joern
    Loch, Florian N.
    Taupitz, Matthias
    Schmidt, C.
    Kreis, Martin E.
    [J]. JOURNAL OF GASTROINTESTINAL SURGERY, 2018, 22 (01) : 146 - 153
  • [10] Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not characterise lymph nodes
    Heijnen, Luc A.
    Lambregts, Doenja M. J.
    Mondal, Dipanjali
    Martens, Milou H.
    Riedl, Robert G.
    Beets, Geerard L.
    Beets-Tan, Regina G. H.
    [J]. EUROPEAN RADIOLOGY, 2013, 23 (12) : 3354 - 3360