A lifelong meta-learning approach for learning deep grey-box representative thermal dynamics models for residential buildings

被引:0
作者
Xie, Jiajia [1 ]
Li, Han [2 ]
Hong, Tianzhen [2 ]
机构
[1] Georgia Inst Technol, Sch Computat Sci & Engn, 756 W Peachtree St NW, Atlanta, GA 30308 USA
[2] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
基金
美国能源部;
关键词
IDENTIFICATION;
D O I
10.1016/j.enbuild.2024.114408
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Thermal dynamics models of residential buildings are crucial for managing energy use and maintaining desirable indoor environment quality, in the context of decarbonizing the electric grid. Despite recent developments in data -driven models, the implementation with a massive number of buildings in the real world remains infeasible because the computation is expensive and the thermostat data of buildings can be online and sparse. A representative model for aggregated study and acceleration of personalizing models is needed for many downstream tasks. In addition, most existing data -driven models lack physical interpretability questioning the representativeness of any aggregated model. In this paper, we present an online framework for learning meta-models of thermal dynamics across various residential buildings. The meta-models are physically explainable according to the building types and can accelerate fine-tuning personalized models for any building saving data and computation. Experiments suggest that our method performs well with a real -world online dataset that produces representative models of different climate zones and effective initialization for training individual models.
引用
收藏
页数:11
相关论文
共 33 条
[1]   On the comparison of three numerical methods applied to building simulation: Finite-differences, RC circuit approximation and a spectral method [J].
Berger, Julien ;
Gasparin, Suelen ;
Dutykh, Denys ;
Mendes, Nathan .
BUILDING SIMULATION, 2020, 13 (01) :1-18
[2]   Identification of thermal characteristics of a building [J].
Bouache, Toufik ;
Ginestet, Stephane ;
Limam, Karim ;
Lindner, Guilherme ;
Bosschaerts, Walter .
MEDITERRANEAN GREEN ENERGY FORUM 2013: PROCEEDINGS OF AN INTERNATIONAL CONFERENCE MGEF-13, 2013, 42 :280-288
[3]   Modeling and forecasting building energy consumption: A review of data-driven techniques [J].
Bourdeau, Mathieu ;
Zhai, Xiao Qiang ;
Nefzaoui, Elyes ;
Guo, Xiaofeng ;
Chatellier, Patrice .
SUSTAINABLE CITIES AND SOCIETY, 2019, 48
[4]   Parameter estimation for grey-box models of building thermal behaviour [J].
Brastein, O. M. ;
Perera, D. W. U. ;
Pfeifer, C. ;
Skeie, N. O. .
ENERGY AND BUILDINGS, 2018, 169 :58-68
[5]  
Chen YJ, 2020, P AMER CONTR CONF, P2345, DOI [10.23919/ACC45564.2020.9147321, 10.23919/acc45564.2020.9147321]
[6]   Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States [J].
Cramer, Estee Y. ;
Ray, Evan L. ;
Lopez, Velma K. ;
Bracher, Johannes ;
Brennen, Andrea ;
Rivadeneira, Alvaro J. Castro ;
Gerding, Aaron ;
Gneiting, Tilmann ;
House, Katie H. ;
Huang, Yuxin ;
Jayawardena, Dasuni ;
Kanji, Abdul H. ;
Khandelwal, Ayush ;
Le, Khoa ;
Muhlemann, Anja ;
Niemi, Jarad ;
Shah, Apurv ;
Stark, Ariane ;
Wang, Yijin ;
Wattanachit, Nutcha ;
Zorn, Martha W. ;
Gu, Youyang ;
Jain, Sansiddh ;
Bannur, Nayana ;
Deva, Ayush ;
Kulkarni, Mihir ;
Merugu, Srujana ;
Raval, Alpan ;
Shingi, Siddhant ;
Tiwari, Avtansh ;
White, Jerome ;
Abernethy, Neil F. ;
Woody, Spencer ;
Dahan, Maytal ;
Fox, Spencer ;
Gaither, Kelly ;
Lachmann, Michael ;
Meyers, Lauren Ancel ;
Scott, James G. ;
Tec, Mauricio ;
Srivastava, Ajitesh ;
George, Glover E. ;
Cegan, Jeffrey C. ;
Dettwiller, Ian D. ;
England, William P. ;
Farthing, Matthew W. ;
Hunter, Robert H. ;
Lafferty, Brandon ;
Linkov, Igor ;
Mayo, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (15)
[7]  
DOE U.S., 2015, QUADRENNIAL TECHNOLO
[8]   Physics-constrained deep learning of multi-zone building thermal dynamics [J].
Drgona, Jan ;
Tuor, Aaron R. ;
Chandan, Vikas ;
Vrabie, Draguna L. .
ENERGY AND BUILDINGS, 2021, 243
[9]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[10]  
Eckman T., 2022, Determining utility system value of demand flexibility from grid-interactive efficient buildings