Thermoluminescence dosimetry (TLD) in a 3 T magnetic resonance imaging (MRI) environment: implications for personnel exposure monitoring

被引:1
作者
Mehrara, Esmaeil [1 ,2 ]
机构
[1] Sahlgrens Univ Hosp, Dept Med Phys & Biomed Engn MFT, SE-41345 Gothenburg, Sweden
[2] Univ Gothenburg, Inst Clin Sci, Sahlgrenska Acad, Dept Med Radiat Sci, Gothenburg, Sweden
关键词
TLD; personal dosimetry; PET; MRI; static magnetic field; radiotherapy; RADIATION;
D O I
10.1088/2057-1976/ad470c
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Thermoluminescent dosimeters (TLDs) serve as compact and user-friendly tools for various applications, including personal radiation dosimetry and radiation therapy. This study explores the potential of utilizing TLD-100 personal dosimetry, conventionally applied in PET/CT (positron emission tomography/computed tomography) settings, in the PET/MRI (magnetic resonance imaging) environment. The integration of MRI into conventional radiotherapy and PET systems necessitates ionizing radiation dosimetry in the presence of static magnetic fields. In this study, TLD-100 dosimeters were exposed on the surface of a water-filled cylindrical phantom containing PET-radioisotope and positioned on the patient table of a 3 T PET/MRI, where the magnetic field strength is around 0.2 T, aiming to replicate real-world scenarios experienced by personnel in PET/MRI environments. Results indicate that the modified MR-safe TLD-100 personal dosimeters exhibit no significant impact from the static magnetic field of the 3 T PET/MRI, supporting their suitability for personal dosimetry in PET/MRI settings. This study addresses a notable gap in existing literature on the effect of MRI static magnetic field on TLDs.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 2000, Calibration of radiation protection monitoring instruments
[2]   Traceable reference dosimetry in MRI guided radiotherapy using alanine: calibration and magnetic field correction factors of ionisation chambers [J].
Billas, Ilias ;
Bouchard, Hugo ;
Oelfke, Uwe ;
Duane, Simon .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (16)
[3]  
Darafsheh A., 2021, Radiation Therapy Dosimetry: A Practical Handbook, DOI DOI 10.1201/9781351005388
[4]  
IAEA, 2004, Practical Radiation Technical Manual: Individual Monitoring
[5]  
IEEE, 2019, ISO 4049 Dentistry: Polymer -based Filling, Restorative Materials, P1, DOI 10.1109/IEEESTD.2019.8767004
[6]  
Itikawa E., 2023, Brazilian Journal of Radiation Sciences, V11, P1, DOI [10.15392/2319-0612.2023.2154, DOI 10.15392/2319-0612.2023.2154]
[7]  
Jae-Yong Je,, 2013, [Journal of the Korean Society of Radiology, 한국방사선학회논문지], V7, P415, DOI 10.7742/jksr.2013.7.6.415
[8]   AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs [J].
Kry, Stephen F. ;
Alvarez, Paola ;
Cygler, Joanna E. ;
DeWerd, Larry A. ;
Howell, Rebecca M. ;
Meeks, Sanford ;
O'Daniel, Jennifer ;
Reft, Chester ;
Sawakuchi, Gabriel ;
Yukihara, Eduardo G. ;
Mihailidis, Dimitris .
MEDICAL PHYSICS, 2020, 47 (02) :E19-E51
[9]  
Mathis M., 2014, SCI EXH 2014 COMB SC, DOI [10.1594/ranzcr2014/R-0175, DOI 10.1594/RANZCR2014/R-0175]
[10]   Nuclear medicine staff exposure to ionising radiation in 18F-FDG PET/CT practice: a preliminary retrospective study [J].
Pavicar, Bojan ;
Davidovic, Jasna ;
Petrovic, Biljana ;
Vuleta, Goran ;
Trivic, Sasa ;
Sajinovic, Vlatko ;
Egeljic-Mihailovic, Natasa ;
Todorovic, Natasa ;
Predojevic, Branko .
ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU-ARCHIVES OF INDUSTRIAL HYGIENE AND TOXICOLOGY, 2021, 72 (03) :216-224