Microwave dielectric properties and LTCC applications of new glass-free molybdate ceramics Li3Ba2Ln3(MoO4)8 (Ln=Gd, Tm)

被引:2
作者
Li, Meiying [1 ]
Huang, Binghong [2 ]
Shang, Fei [1 ]
Chen, Guohua [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdate ceramic; Microwave dielectric properties; LTCC; CRYSTAL-STRUCTURE; LN; MICROSTRUCTURE;
D O I
10.1016/j.ceramint.2024.04.266
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The traditional solid-state sintering method was employed to prepare Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm) ceramics, and the impact of firing temperature on the structure, microstructure and microwave dielectric properties of the novel molybdate Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm) ceramics was examined. XRD and Rietveld refinement outcomes validate the monoclinic system with the C2 / c space group for Li 3 Ba 2 Ln 3 (MoO 4 ) 8 (Ln = Gd, Tm). For the Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic sintered at 800 degrees C, a e r is 9.42, a Q x f is 16,988 GHz, and a ti f is 4.57 ppm/ degrees C. The Li 3 Ba 2 Tm 3 (MoO 4 ) 8 ceramic sintered at 800 degrees C has a e r of 9.74, a Q x f of 25,401 GHz, and a ti f of 1.08 ppm/ degrees C. XRD and EDS analyses prove the good chemical compatibility of the co-sintered Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic with the Ag electrode. Therefore, the Li 3 Ba 2 Gd 3 (MoO 4 ) 8 ceramic is suitable candidate material for LTCC applications.
引用
收藏
页码:25349 / 25354
页数:6
相关论文
共 31 条
[11]   Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications [J].
Lou, Weichao ;
Mao, Minmin ;
Song, Kaixin ;
Xu, Kuiwen ;
Liu, Bing ;
Li, Wenjun ;
Yang, Bin ;
Qi, Zeming ;
Zhao, Jianwei ;
Sun, Shikuan ;
Lin, Huixin ;
Hu, Yuanyun ;
Zhou, Di ;
Wang, Dawei ;
Reaney, Ian M. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (06) :2820-2826
[12]   Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO-B2O3-SiO2 glass [J].
Lv, Xuepeng ;
Zheng, Yong ;
Zhou, Bin ;
Dong, Zuowei ;
Cheng, Peng .
MATERIALS LETTERS, 2013, 91 :217-219
[13]   Microwave dielectric properties of barium substituted screen printed CaBi2Nb2O9 ceramic thick films [J].
Phadtare, Varsha D. ;
Parale, Vinayak G. ;
Kulkarni, Gopal K. ;
Park, Hyung-Ho ;
Puri, Vijaya R. .
CERAMICS INTERNATIONAL, 2018, 44 (07) :7515-7523
[14]   DIELECTRIC POLARIZABILITIES OF IONS IN OXIDES AND FLUORIDES [J].
SHANNON, RD .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (01) :348-366
[15]   Crystal structure, Raman spectroscopy, metal compatibility and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics [J].
Shi, Liang ;
Liu, Cheng ;
Zhang, Huaiwu ;
Peng, Rui ;
Wang, Gang ;
Shi, Xiaolei ;
Wang, Xueying ;
Wang, Wenwen .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 250 (250)
[16]   Growth and spectral properties of Nd3+-doped Li3Ba2Y3(MoO4) crystal [J].
Song, Mingjun ;
Wang, Guojian ;
Lin, Zhoubin ;
Zhang, Lizhen ;
Wang, Guofu .
JOURNAL OF CRYSTAL GROWTH, 2007, 308 (01) :208-212
[17]   Microwave dielectric losses caused by lattice defects [J].
Tamura, Hiroshi .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (10-11) :1775-1780
[18]   Effect of B2O3 Additives on the Sintering and Dielectric Behaviors of CaMgSi2O6 Ceramics [J].
Wang, Huanping ;
Xu, Shiqing ;
Zhai, Suya ;
Deng, Degang ;
Ju, Haidong .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (04) :351-354
[19]   Crystal structure and microwave dielectric properties of a new low-loss ceramic NiTiTa2O8 [J].
Wang, Shiyuan ;
Chen, Jundan ;
Zhang, Yujuan ;
Zhang, Yingchun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 805 :852-858
[20]   Phase Composition, Raman Spectrum and Microwave Dielectric Properties of glass-free low temperature co-fired ACaPr(MoO4)3 (A = Na, K) Ceramics [J].
Wei, Xiaoli ;
He, Yinghan ;
Chen, Xiuli ;
Zhou, Huanfu .
CERAMICS INTERNATIONAL, 2023, 49 (22) :36962-36969